Skip to main content
Log in

Existence and local uniqueness of normalized solutions for two-component Bose–Einstein condensates

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the following two-component Bose–Einstein condensates (BEC)

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u_1 +V_1(x) u_1= a_1 u_1^3 +\mu u_1+\beta u_1u_2^2 &{}~\text {in}\;\mathbb R^2,\\ \\ -\Delta u_2+V_2(x) u_2= a_2 u_2^3 +\mu u_2+\beta u_1^2u_2 &{}~\text {in}\;\mathbb R^2, \end{array}\right. } \end{aligned}$$

with the constraint \(\displaystyle \int \limits _{\mathbb R^2}(u_1^2+u_2^2)dx=1\). The existence and local uniqueness of k-peak solutions are given by finite-dimensional reduction and local Pohozaev identities, which gives the description of excited state of BEC phenomenon stated and generalizes the results in [15] about the ground states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 30, 85–112 (2007)

    Article  Google Scholar 

  2. Anderson, M., Ensher, J., Matthews, M., Wieman, C., Cornell, E.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  3. Bao, W., Cai, Y.: Mathmatical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  Google Scholar 

  5. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272, 4998–5037 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Partial Differ. Equ. 58, 22 (2019)

    Article  Google Scholar 

  7. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. Math. Pures Appl. 106, 583–614 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bartsch, T., Zhong, X., Zou, W.: Normalized solutions for a coupled Schrödinger system. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-02000-w

    Article  MATH  Google Scholar 

  9. Cao, D., Peng, S., Yan, S.: Singularly Perturbed Methods for Nonlinear Elliptic Problems. Cambridge University Press, New York (2020)

    MATH  Google Scholar 

  10. Cao, D., Li, S., Luo, P.: Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 4037–4063 (2015)

    Article  Google Scholar 

  11. Chen, Z., Zou, W.: Normalized solutions for nonlinear Schrödinger systems with linear couples. J. Math. Anal. Appl. 499, 22 (2021)

    MATH  Google Scholar 

  12. Deng, Y., Lin, C., Yan, S.: On the prescribed scalar curvature problem in \(\mathbb{R}^N\), local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015)

    Article  MathSciNet  Google Scholar 

  13. Esry, B., Greene, C., Burke, J., Bohn, J.: Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    Article  Google Scholar 

  14. Gross, E.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y., Li, S., Wei, J., Zeng, X.: Ground states of two-component attractive Bose–Einstein condensates I: existence and uniqueness. J. Funct. Anal. 276, 183–230 (2019)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Li, S., Wei, J., Zeng, X.: Ground states of two-component attractive Bose–Einstein condensates II: semi-trivial limit behavior. Trans. Am. Math. Soc. 371, 6903–6948 (2019)

    Article  MathSciNet  Google Scholar 

  17. Guo, Y., Lin, C., Wei, J.: Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose–Einstein condensates. SIAM J. Math. Anal. 49, 3671–3715 (2017)

    Article  MathSciNet  Google Scholar 

  18. Guo, Y., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  19. Guo, Y., Zeng, X., Zhou, H.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828 (2016)

    Article  MathSciNet  Google Scholar 

  20. Guo, Y.X., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. Lond. Math. Soc. 114, 1005–1043 (2017)

    Article  MathSciNet  Google Scholar 

  21. Jia, H., Li, G., Luo, X.: Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete Contin. Dyn. Syst. 40, 2739–2766 (2020)

    Article  MathSciNet  Google Scholar 

  22. Ketterle, W.: Nobel lecture: when atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  Google Scholar 

  23. Lu, L.: \(L^2\) normalized solutions for nonlinear Schrödinger systems in \(\mathbb{R}^3\). Nonlinear Anal. 191, 19 (2020)

    Article  Google Scholar 

  24. Lin, T., Wei, J.: Ground state of N coupled nonlinear Schrödinger equations in \(\mathbb{R}^N\), \(N\le 3\). Commun. Math. Phys. 255, 629–653 (2005)

    Article  Google Scholar 

  25. Long, W., Peng, S.: Segregated vector solutions for a class of Bose–Einstein systems. J. Differ. Equ. 257, 207–230 (2014)

    Article  MathSciNet  Google Scholar 

  26. Luo, P., Peng, S., Yan, S.: Excited states on Bose–Einstein condensates with attractive interactions. preprint

  27. Peng, S., Wang, Z.: Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch. Ration. Mech. Anal. 208, 305–339 (2013)

    Article  MathSciNet  Google Scholar 

  28. Pitaevskii, L.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  29. Royo-Letelier, J.: Segregation and symmetry breaking of strongly coupled two component Bose–Einstein condensates in a harmonic trap. Calc. Var. Partial Differ. Equ. 49, 103–124 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shuangjie Peng and Peng Luo for interesting discussion on local uniqueness. Qing Guo has been supported by NSFC Grants (No.11771469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafei Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Xie, H. Existence and local uniqueness of normalized solutions for two-component Bose–Einstein condensates. Z. Angew. Math. Phys. 72, 189 (2021). https://doi.org/10.1007/s00033-021-01619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01619-2

Keywords

Mathematics Subject Classification

Navigation