Skip to main content
Log in

Existence and stability of steady-state solutions of reaction–diffusion equations with nonlocal delay effect

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A general reaction–diffusion equation with spatiotemporal delay and homogeneous Dirichlet boundary condition is considered. The existence and stability of positive steady-state solutions are proved via studying an equivalent reaction–diffusion system without nonlocal and delay structure and applying local and global bifurcation theory. The global structure of the set of steady states is characterized according to type of nonlinearities and diffusion coefficient. Our general results are applied to diffusive logistic growth models and Nicholson’s blowflies-type models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ai, S.B.: Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differ. Equ. 232(1), 104–133 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashwin, P., Bartuccelli, M.V., Bridges, T.J., Gourley, S.A.: Travelling fronts for the KPP equation with spatio-temporal delay. Z. Angew. Math. Phys. 53(1), 103–122 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Britton, N.F.: Aggregation and the competitive exclusion principle. J. Theor. Biol. 136(1), 57–66 (1989)

    Article  MathSciNet  Google Scholar 

  4. Britton, N.F.: Spatial structures and periodic travelling waves in an integro-differential reaction–diffusion population model. SIAM J. Appl. Math. 50(6), 1663–1688 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Busenberg, S., Huang, W.Z.: Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differ. Equ. 124(1), 80–107 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cantrell, R.S., Cosner, C.: Spatial ecology via reaction-diffusion equations. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

  7. Casal, A., Eilbeck, J.C., López-Gómez, J.: Existence and uniqueness of coexistence states for a predator-prey model with diffusion. Differ. Integral Equ. 7(2), 411–439 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Chen, S.S., Shi, J.P.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. Differ. Integral Equ. 253(12), 3440–3470 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, S.S., Yu, J.S.: Stability analysis of a reaction–diffusion equation with spatiotemporal delay and Dirichlet boundary condition. J. Dyn. Differ. Equ. 28(3–4), 857–866 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, S.S., Yu, J.S.: Stability and bifurcations in a nonlocal delayed reaction–diffusion population model. J. Differ. Equ. 260(1), 218–240 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rational Mech. Anal. 52, 161–180 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cui, R.H., Li, P., Shi, J.P., Wang, Y.W.: Existence, uniqueness and stability of positive solutions for a class of semilinear elliptic systems. Topol. Methods Nonlinear Anal. 42(1), 91–104 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Deng, K., Wu, Y.X.: On the diffusive Nicholson’s blowflies equation with distributed delay. Appl. Math. Lett. 50, 126–132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gourley, S.A.: Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41(3), 272–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gourley, S.A., Ruan, S.G.: Dynamics of the diffusive Nicholson’s blowflies equation with distributed delay. Proc. R. Soc. Edinb. Sect. A 130(6), 1275–1291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gourley, S .A., So, J.-H., Wu, J .H.: Nonlocality of reaction–diffusion equations induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. (N.Y.) 124(4), 5119–5153 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gourley, S.A., So, J.W.-H.: Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J. Math. Biol. 44(1), 49–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gourley, S.A., Wu, J.H.: Delayed non-local diffusive systems in biological invasion and disease spread. In Nonlinear dynamics and evolution equations, volume 48 of Fields Inst. Commun., pages 137–200. Amer. Math. Soc., Providence, RI (2006)

  20. Green, D., Stech, H.W.: Diffusion and hereditary effects in a class of population models. In: Differential Equations and Applications in Ecology, Epidemics, and Population Problems (Claremont, Calif., 1981), pages 19–28. Academic Press, New York-London (1981)

  21. Guo, S.J.: Stability and bifurcation in a reaction–diffusion model with nonlocal delay effect. J. Differ. Equ. 259(4), 1409–1448 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, S.J., Ma, L.: Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition. J. Nonlinear Sci. 26(2), 545–580 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, W.Z.: Global dynamics for a reaction–diffusion equation with time delay. J. Differ. Equ. 143(2), 293–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, W.T., Ruan, S.G., Wang, Z.C.: On the diffusive Nicholson’s blowflies equation with nonlocal delay. J. Nonlinear Sci. 17(6), 505–525 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. López-Gómez, J., Pardo, R.: Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case. Differ. Integral Equ. 6(5), 1025–1031 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Ma, S.W.: Traveling wavefronts for delayed reaction–diffusion systems via a fixed point theorem. J. Differ. Equ. 171(2), 294–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Memory, M.C.: Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion. SIAM J. Math. Anal. 20(3), 533–546 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ni, W.J., Shi, J.P., Wang, M.X.: Global stability and pattern formation in a nonlocal diffusive Lotka–Volterra competition model. J. Differ. Equ. 264(11), 6891–6932 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Parrott, M.E.: Linearized stability and irreducibility for a functional-differential equation. SIAM J. Math. Anal. 23(3), 649–661 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shi, J.P.: Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169(2), 494–531 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi, J.P., Wang, X.F.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246(7), 2788–2812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi, Q.Y., Shi, J.P., Song, Y.L.: Hopf bifurcation in a reaction–diffusion equation with distributed delay and Dirichlet boundary condition. J. Differ. Equ. 263(10), 6537–6575 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shi, Q.Y., Shi, J.P., Song, Y.L.: Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete Contin. Dyn. Syst. Ser. B 24(2), 467–486 (2019)

    MathSciNet  MATH  Google Scholar 

  35. So, J .W.-H., Wu, J .H., Zou, X .F.: A reaction–diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2012), 1841–1853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. So, J.W.-H., Yang, Y.J.: Dirichlet problem for the diffusive Nicholson’s blowflies equation. J. Differ. Equ. 150(2), 317–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Su, Y., Wei, J.J., Shi, J.P.: Hopf bifurcations in a reaction–diffusion population model with delay effect. J. Differ. Equ. 247(4), 1156–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Su, Y., Wei, J.J., Shi, J.P.: Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence. J. Dyn. Differ. Equ. 24(4), 897–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Su, Y., Zou, X.F.: Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition. Nonlinearity 27(1), 87–104 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Z.C., Li, W.T., Ruan, S.G.: Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays. J. Differ. Equ. 222(1), 185–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, J.H., Zou, X.F.: Traveling wave fronts of reaction–diffusion systems with delay. J. Dyn. Differ. Equ. 13(3), 651–687 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yan, X.P., Li, W.T.: Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model. Nonlinearity 23(6), 1413–1431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, Y.J., So, J.W.-H.: Dynamics for the diffusive Nicholson’s blowflies equation. Number Added II, pp. 333–352, Dynamical systems and differential equations, Vol, p. 1996. MO, II (Springfield (1998)

  44. Yi, T.S., Zou, X.F.: Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case. J. Differ. Equ. 245(11), 3376–3388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yi, T .S., Zou, X .F.: Map dynamics versus dynamics of associated delay reaction–diffusion equations with a Neumann condition. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466(2122), 2955–2973 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Yi, T.S., Zou, X.F.: On Dirichlet problem for a class of delayed reaction–diffusion equations with spatial non-locality. J. Dyn. Differ. Equ. 25(4), 959–979 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yoshida, K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12(2), 321–348 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, X.-Q.: Dynamical systems in population biology. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, second edition (2017)

  49. Zuo, W.J., Song, Y.L.: Stability and bifurcation analysis of a reaction–diffusion equation with distributed delay. Nonlinear Dyn. 79(1), 437–454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zuo, W.J., Song, Y.L.: Stability and bifurcation analysis of a reaction–diffusion equation with spatio-temporal delay. J. Math. Anal. Appl. 430(1), 243–261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was completed when the first author visited William & Mary in 2015–2016, and she would like to thank W&M for warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the NSFC of China (No. 11671236), the Natural Science Foundation of Shandong Province of China (No. ZR2019MA006), the Fundamental Research Funds for the Central Universities (No. 19CX02055A), China Scholarship Council and US-NSF grants DMS-1715651 and DMS-1853598.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, W., Shi, J. Existence and stability of steady-state solutions of reaction–diffusion equations with nonlocal delay effect. Z. Angew. Math. Phys. 72, 43 (2021). https://doi.org/10.1007/s00033-021-01474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01474-1

Keywords

Mathematics Subject Classification

Navigation