Skip to main content
Log in

General decay properties of abstract linear viscoelasticity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider a linear Volterra integro-differential equation of hyperbolic type, which can be viewed as an abstract version of the equation

$$\begin{aligned} \partial _{tt} u(t)- \varDelta u(t) +\displaystyle \int \limits _0^t\mu (s)\varDelta u(t-s)\mathrm{d}s=0 \end{aligned}$$

describing the motion of linearly viscoelastic solids. We establish some decay results for the associated energy, under assumptions that do not involve differential inequalities for the convolution kernel \(\mu \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira, F., Cannarsa, P.: A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Math. Acad. Sci. Paris 347, 867–872 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254, 1342–1372 (2008)

    Article  MathSciNet  Google Scholar 

  3. Cavalcanti, M.M., Cavalcanti, V.N.Domingos, Lasiecka, I., Webler, C.M.: Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Adv. Nonlinear Anal. 6, 121–145 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Chepyzhov, V.V., Pata, V.: Some remarks on stability of semigroups arising from linear viscoelasticity. Asymptot. Anal. 46, 251–273 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Conti, M., Gatti, S., Pata, V.: Uniform decay properties of linear Volterra integro-differential equations. Math. Models Methods Appl. Anal. 18, 21–45 (2008)

    Article  MathSciNet  Google Scholar 

  6. Dafermos, C.M.: An abstract Volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 7, 554–569 (1970)

    Article  MathSciNet  Google Scholar 

  7. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 554–569 (1970)

    Article  MathSciNet  Google Scholar 

  8. Dafermos, C.M.: Contraction semigroups and trend to equilibrium in continuum mechanics. In: ‘Applications of Methods of Functional Analysis to Problems in Mechanics, pp. 295–306. Lecture Notes in Mathematics no. 503. Springer (1976)

  9. Fabrizio, M., Lazzari, B.: On the existence and asymptotic stability of solutions for linear viscoelastic solids. Arch. Ration. Mech. Anal. 116, 139–152 (1991)

    Article  Google Scholar 

  10. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics no. 12. Philadelphia (1992)

  11. Guesmia, A., Messaoudi, S.M.: A general decay result for a viscoelastic equation in the presence of past and finite history memories. Nonlinear Anal. Real World Appl. 13, 476–485 (2012)

    Article  MathSciNet  Google Scholar 

  12. Lasiecka, L., Messaoudi, S.A., Mustafa, M.I.: Note on intrinsic decay rates for abstract wave equations with memory. J. Math. Phys. 54, 031504 (2013)

    Article  MathSciNet  Google Scholar 

  13. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation. Differ. Integr. Equ. 6, 507–533 (1993)

    MATH  Google Scholar 

  14. Lasiecka, I., Wang, X.: Intrinsic decay rate estimates for semilinear abstract second order equations with memory. In: New Prospects in Direct, Inverse and Control Problems for Evolution Equations, pp. 271–303, Springer INdAM Ser., 10, Springer, Cham (2014)

    Google Scholar 

  15. Liu, W.J.: General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. J. Math. Phys. 50, 113506 (2009)

    Article  MathSciNet  Google Scholar 

  16. Liu, Z., Zheng, S.: On the exponential stability of linear viscoelasticity and thermoviscoelasticity. Q. Appl. Math. 54, 21–31 (1996)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall, Boca Raton (1999)

    MATH  Google Scholar 

  18. Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341, 1457–1467 (2008)

    Article  MathSciNet  Google Scholar 

  19. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 69, 2589–2598 (2008)

    Article  MathSciNet  Google Scholar 

  20. Messaoudi, S.A., Tatar, N.-E.: Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math. Methods Appl. Sci. 30, 665–680 (2007)

    Article  MathSciNet  Google Scholar 

  21. Muñoz-Rivera, J.E.: Asymptotic behaviour in linear viscoelasticity. Q. Appl. Math. 52, 629–648 (1994)

    Article  MathSciNet  Google Scholar 

  22. Muñoz-Rivera, J.E., Lapa, E.Cabanillas: Decay rates of solutions of an anisotropic inhomogeneous \(n\)-dimensional viscoelastic equation with polynomially decaying kernels. Commun. Math. Phys. 177, 583–602 (1996)

    Article  MathSciNet  Google Scholar 

  23. Mustafa, M.I.: Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. 41, 192–204 (2018)

    Article  MathSciNet  Google Scholar 

  24. Mustafa, M.I., Messaoudi, S.A.: General stability result for viscoelastic wave equations. J. Math. Phys. 53, 053702 (2012)

    Article  MathSciNet  Google Scholar 

  25. Pata, V.: Exponential stability in linear viscoelasticity. Q. Appl. Math. 64, 499–513 (2006)

    Article  MathSciNet  Google Scholar 

  26. Pata, V.: Exponential stability in linear viscoelasticity with almost flat memory kernels. Commun. Pure Appl. Anal. 9, 721–730 (2010)

    Article  MathSciNet  Google Scholar 

  27. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  28. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. Wiley, New York (1987)

    MATH  Google Scholar 

  29. Rudin, W.: Real and complex analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Conti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, M., Pata, V. General decay properties of abstract linear viscoelasticity. Z. Angew. Math. Phys. 71, 6 (2020). https://doi.org/10.1007/s00033-019-1229-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1229-5

Keywords

Mathematics Subject Classification

Navigation