Skip to main content
Log in

Asymptotic behavior and uniqueness of traveling wave fronts in a competitive recursion system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the asymptotic behavior and uniqueness of traveling wave fronts connecting two half-positive equilibria in a competitive recursion system. We first prove that these traveling wave fronts have the exponential decay rates at the minus/plus infinity, where for a given wave speed, there are three possible asymptotic behaviors for the first component of the wave profile at the plus infinity and the second component of the wave profile at the minus infinity, respectively. And then we use the sliding method to prove the uniqueness of traveling wave fronts for this system. Furthermore, by combining uniqueness and upper and lower solutions technique, we also give the exact decay rate of the weaker competitor under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, X., Fu, S., Guo, J.: Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal. 38, 233–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X., Guo, J.: Uniqueness and existence of travelling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diekmann, O., Kaper, H.: On the bounded solutions of a nonlinear convolution equation. J. Nonlinear. Anal. 2, 721–737 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, J., Wu, C.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ. 252, 4357–4391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Leslie, P.H.: A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45, 16–31 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Leung, A., Hou, X., Li, Y.: Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities. J. Math. Anal. Appl. 338, 902–924 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lewis, M.: Spread rate for a nonlinear stochastic invasion. J. Math. Biol. 41, 430–454 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lewis, M., Li, B., Weinberger, H.: Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, B., Weinberger, H., Lewis, M.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 82–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, K., Li, X.: Traveling wave solutions in a delayed diffusive competition system. Nonlinear Anal. TMA 75, 3705–3722 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, K., Li, X.: Asymptotic behavior and uniqueness of traveling wave solutions in Ricker competition system. J. Math. Anal. Appl. 389, 486–497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, G., Li, W., Ruan, S.: Spreading speeds and traveling waves in competitive recursion systems. J. Math. Biol. 62, 165–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, P.Z., Elaydi, S.N.: Discrete competitive and cooperative models of Lotka-Volterra type. J. Comput. Anal. Appl. 3, 53–73 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Lv, G.: Asymptotic behavior of traveling fronts and entire solutions for a nonlocal monostable equation. Nonlinear Anal. TMA 72, 3659–3668 (2010)

    Article  MATH  Google Scholar 

  16. Lui, R.: Biological growth and spread modeled by systems of recursions. I Mathematical theory. Math. Biosci. 93, 269–295 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Lui, R.: Biological growth and spread modeled by systems of recursions. II Biological theory. Math. Biosci. 93, 297–312 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, H., Castillo-Chavez, C.: Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discret. Cont. Dyn. Syst. Ser. B 17, 2243–2266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weinberger, H., Lewis, M., Li, B.: Analysis of the linear conjecture for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weinberger, H.: Asymptotic behavior of a model in population genetics. In: Chadam, J.M. (ed.) Nonlinear Partial Differential Equations and Applications. Lecture Notes in Mathematics, pp. 47–96. Springer, Berlin (1978)

  21. Weinberger, H.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, Z., Weng, P.: Traveling waves in a convolution model with infinite distributed delay and non-monotonicity. Nonlinear Anal. RWA 12, 633–647 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu, Z.: Uniqueness of critical traveling wave for delayed lattice equation. Proc. Am. Math. Soc. 140, 3853–3859 (2012)

    Article  MATH  Google Scholar 

  24. Yu, Z., Yuan, R.: Existence and asymptotics of traveling waves for nonlocal diffusion systems. Chaos, Solit. Fract. 45, 1361–1367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, Z., Mei, M.: Asymptotics and uniqueness of travelling waves for non-monotone delayed systems on 2D lattices. Can. Math. Bull. 56, 659–672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Y., Zhao, X.: Bistable travelling waves in competitive recursion systems. J. Differ. Equ. 252, 2630–2647 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, G., Li, W., Wang, Z.: Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ. 252, 5096–5124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank two referees for their careful reading and helpful suggestions which led to an improvement of our original manuscript. Kun Li was supported by the National Natural Science Foundation of China (Grant No. 11401198), the Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ3054), the Project Funded by China Postdoctoral Science Foundation (Grant No. 2015M582882), the Provincial Natural Science Foundation of the Higher Educational Institutions of Anhui Province of China (Grant No. KJ2013B245), and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province. Jianhua Huang was supported by the National Natural Science Foundation of China (Grant No. 11371367). Xiong Li was supported by the National Natural Science Foundation of China (Grant No. 11571041) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Huang, J., Li, X. et al. Asymptotic behavior and uniqueness of traveling wave fronts in a competitive recursion system. Z. Angew. Math. Phys. 67, 144 (2016). https://doi.org/10.1007/s00033-016-0739-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0739-7

Mathematics Subject Classification

Keywords

Navigation