Skip to main content
Log in

Torsional vibration of single-walled carbon nanotubes using doublet mechanics

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper investigates the torsional vibration of single-walled carbon nanotubes (SWCNTs) using a new approach based on doublet mechanics (DM) incorporating explicitly scale parameter and chiral effects. A fourth-order partial differential equation that governs the torsional vibration of nanotubes is derived. Using DM, an explicit equation for the natural frequency in terms of geometrical and mechanical property of CNTs is obtained for both the Zigzag and Armchair nanotube for the torsional vibration mode. It is shown that chiral effects along with the scale parameter play a significant role in the vibration behavior of SWCNTs in torsional vibration mode. Such effects decrease the natural frequency obtained by DM compared to the classical continuum mechanics and nonlocal theory predictions. However, with increase in the length and/or the radius of the tube, the effect of the chiral and scale parameter on the natural frequency decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dell’Isola F., Seppecher P., Della Corte A.: The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. Lond. A 471, 20150415.1–20150415.25 (2015)

    MathSciNet  Google Scholar 

  2. Dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R.,Forest S.: The Complete Works of Gabrio Piola. Volume I-Commented English Translation, Springer, Berlin (2014)

  3. Dell’Isola F., Andreaus U., Placidi L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics, an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev., Am. Soc. Mech. Eng. 67(6), <hal01284511.1-25 (2016)

  5. Ferretti M., Madeo A., Dell’Isola F., Boisse P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. ZAMP 65(3), 587–612 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Rinaldi A., Placidi L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM 94(10), 862–877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gianpietro D.: A rational approach to Cosserat continua, with application to plate and beam theories. Mech. Res. Commun. 58, 97–104 (2014)

    Article  Google Scholar 

  8. Bendsoe M.P., Olhoff N., Sigmund O.: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer, Netherlands (2006)

    Book  MATH  Google Scholar 

  9. Forest S., Trinh D.K.: Generalized continua and non-homogeneous boundary conditions in homogenization methods. ZAMM 91(2), 90–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alibert J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solid 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eremeyev V.A., Lebedev L.P.: Existence theorems in the linear theory of micropolar shells. ZAMM 91(6), 468–476 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Reccia E., Cazzani A., Cecchi A.: FEM–DEM modeling for out-of-plane loaded masonry panels: a limit analysis approach. Open Civil Eng. J. 6(1), 231–238 (2012)

    Article  Google Scholar 

  13. Allen M.P.: Introduction to molecular dynamics simulation. Comput. Soft Matter From Synth. Polym. Proteins 23, 1–28 (2004)

    Google Scholar 

  14. Cheng H., Liu Y., Hsu Y., Chen W.: Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solids Struct. 46(7–8), 1695–1704 (2009)

    Article  MATH  Google Scholar 

  15. Paliwal B., Cherkaoui M.: Atomistic–continuum interphase model for effective properties of composite materials containing nano-inhomogeneities. Philos. Mag. Part A Mater. Sci. 91(30), 3905–3930 (2011)

    Google Scholar 

  16. Aufder Maur M., Sacconi F., Penazzi G., Povolotskyi M., Romano G., Pecchia A., Di Carlo A.: Coupling atomistic and finite element approaches for the simulation of optoelectronic devices. Opt. Quantum Electron. 41(9), 671–679 (2009)

    Article  Google Scholar 

  17. Granik, V.T.: Microstructural mechanics of granular media. Technique Report IM/MGU 78-241, Institute of Mechanics of Moscow State University, in Russian (1978)

  18. Granik V.T., Ferrari M.: Microstructural mechanics of granular media. Mech. Mater. 15, 301–322 (1993)

    Article  Google Scholar 

  19. Ferrari M., Granik V.T., Imam A., Nadeau J.: Advances in Doublet Mechanics. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  20. Kojic M., Vlastelica I., Decuzzi P., Granik V.T., Ferrari M.: A finite element formulation for the doublet mechanics modeling of microstructural materials. Comput. Methods Appl. Mech. Eng. 200, 1446–1454 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fatahi-Vajari, A., Imam, A.: Analysis of radial breathing mode vibration of single-walled carbon nanotubes using doublet mechanics. ZAMM (2016). doi:10.1002/zamm201500160

  22. Fatahi-Vajari A., Imam A.: Axial vibration of single-walled carbon nanotubes using doublet mechanics. Indian J. Phys. 90(4), 447–455 (2016)

    Article  MathSciNet  Google Scholar 

  23. Xin, J., Zhou, L.X., Ru, W.J.: Ultrasound attenuation in biological tissue predicted by the modified doublet mechanics model. Chin. Phys. Lett. 26(7), 074301.1-074301.1 (2009)

  24. Ferrari, M.: Nanomechanics, and biomedical nanomechanics: Eshelby’s inclusion and inhomogeneity problems at the discrete continuum interface. Biomed. Microdevices 2(4), 273–281 (2000)

  25. Gentile F., Sakamoto J., Righetti R., Decuzzi P., Ferrari M.: A doublet mechanics model for the ultrasound characterization of malignant tissues. J. Biomed. Sci. Eng. 4, 362–374 (2011)

    Article  Google Scholar 

  26. Lin S.S., Shen Y.C.: Stress fields of a half-plane caused by moving loads-resolved using doublet mechanics. Soil Dyn. Earthq. Eng. 25, 893–904 (2005)

    Article  Google Scholar 

  27. Sadd M.H., Dai Q.: A comparison of micro-mechanical modeling of asphalt materials using finite elements and doublet mechanics. Mech. Mater. 37, 641–662 (2005)

    Article  Google Scholar 

  28. Fang J.Y., Jue Z., Jing F., Ferrari M.: Dispersion analysis of wave propagation in cubic-Tetrahedral assembly by doublet mechanics. Chin. Phys. Lett. 21(8), 1562–1565 (2004)

    Article  Google Scholar 

  29. Bruno L., Decuzzi P., Gentile F.: Stress distribution retrieval in granular materials: a multi-scale model and digital image correlation measurements. Optics Lasers Eng. 76, 17–26 (2016)

    Article  Google Scholar 

  30. Layman C., Wu J.: Theoretical study in applications of doublet mechanics to detect tissue pathological changes in elastic properties using high frequency ultrasound. J. Acoust. Soc. Am. 116(2), 1244–1253 (2004)

    Article  Google Scholar 

  31. Ling L., Xiao-Zhou L., Jie-Hui L., Xiu-Fen G.: Ultrasonic tissue characterization of skin tissue using doublet mechanics method. Acta Phys. Sin. 63(10), 104304.1–104304.9 (2014)

    Google Scholar 

  32. Sadd M.H.: Elasticity Theory, Applications, and Numeric. Elsevier Butterworth-Heinemann, Burlington (2005)

    Google Scholar 

  33. Ferrari M.: BioMEMS and Biomedical Nanotechnology, Volume I Biological and Biomedical Nanotechnology. Springer, New York (2006)

    Book  Google Scholar 

  34. Piola, G.: Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione, Modena, Tipi del R.D. Camera (1846)

  35. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, l–16 (1972)

    MathSciNet  MATH  Google Scholar 

  36. Dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids (2016) hal01256929.1-21

  37. Eremeyev V.A.: On effective properties of materials at the nano and microscales considering surface effects. ActaMechanica 227, 29–42 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Del’Isola F., Giorgio I., Pawlikowski M., Rizzi N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. R. Soc. 472(2185), 20150790.1–20150790.24 (2016)

    Google Scholar 

  39. Lim C.W., Li C., Yu J.L.: Free torsional vibration of nanotubes based on nonlocal stress theory. J. Sound Vib. 331, 2798–2808 (2012)

    Article  Google Scholar 

  40. Suiker A.S.J., Metrikine A.V., de Borst R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001)

    Article  MATH  Google Scholar 

  41. Gheshlaghi B., Hasheminejad S.M., Abbasion S.: Size dependent torsional vibration of nanotubes. Phys. E 43, 45–48 (2010)

    Article  Google Scholar 

  42. Arda M., Aydogdu M.: Analysis of free torsional vibration in carbon nanotubes embedded in a viscoelastic medium. Adv. Sci. Technol. Res. J. 9(26), 28–33 (2015)

    Article  Google Scholar 

  43. Selim M.M.: Torsional vibration of carbon nanotubes under initial compression stress. Braz. J. Phys. 40(3), 283–287 (2009)

    Article  MathSciNet  Google Scholar 

  44. Demir C., Civalek O.: Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 37, 9355–9367 (2013)

    Article  Google Scholar 

  45. Dove M.T.: An introduction to atomistic simulation methods. Seminarios de la SEM 4, 7–37 (2007)

    Google Scholar 

  46. Yang Y., Lim C.W.: Non-classical stiffness strengthening size effects for free vibration of a nonlocal nanostructure. Int. J. Mech. Sci. 54, 57–68 (2012)

    Article  Google Scholar 

  47. Aydogdu M.: Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech. Res. Commun. 43, 34–40 (2012)

    Article  Google Scholar 

  48. Carcaterra A.: Quantum Euler beam—QUEB: modeling nanobeams vibration. Contin. Mech. Thermodyn. 27, 145–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Friak M., Hickel T., Grabowski B., Lymperakis L., Udyansky A., Dick A., Ma D., Roters F., Zhu L.F., Schlieter A., Kuhn U., Ebrahimi Z., Lebensohn R.A., Holec D., Eckert J., Emmerich H., Raabe D., Neugebauer J.: Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications. Eur. Phys. J. Plus 126(101), 1–22 (2011)

    Google Scholar 

  50. Ramasubramaniam A., Carter E.A.: Coupled quantum–atomistic and quantum–continuum mechanics methods in materials research. MRS Bull. 32, 913–918 (2007)

    Article  Google Scholar 

  51. Hu Y.G., Liew K.M., Wang Q., He X.Q., Yakobson B.I.: Nonlocal shell model for elastic wave propagation in single and double walled carbon nanotubes. J. Mech. Phys. Solids 56, 3475–3485 (2008)

    Article  MATH  Google Scholar 

  52. Bachilo S.M., Strano M.S., Kittrell C., Hauge R.H., Smalley R.E., Weisman R.B.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602), 2361–2366 (2002)

    Article  Google Scholar 

  53. Rao A., Richter E., Bandow S., Chase B., Eklund P., Williams K., Fang S., Subbaswamy K., Menon M., Thess A.: Diameter-selective Raman scattering from vibrational modes in carbon nanotubes.. Science 275(5297), 187–191 (1997)

    Article  Google Scholar 

  54. Bandow S., Asaka S., Saito Y., Rao A., Grigorian L., Richter E., Eklund P.: Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80(17), 3779–3782 (1998)

    Article  Google Scholar 

  55. Sanchez-Portal D., Artacho E., Soler J.M., Rubio A., Ordejon P.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59(19), 12678–12688 (1999)

    Article  Google Scholar 

  56. Gupta S.S., Batra R.C.: Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comput. Mater. Sci. 43, 715–723 (2008)

    Article  Google Scholar 

  57. Gupta S.S., Bosco F.G., Batra R.C.: Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Comput. Mater. Sci. 47, 1049–1059 (2010)

    Article  Google Scholar 

  58. Rao S.S.: Vibration of Continuous Systems. Wiley, New Jersey (2007)

    Google Scholar 

  59. Clausius R.: On a mechanical theorem applicable to heat. Philos. Mag. 40(265), 122–127 (1870)

    Google Scholar 

  60. Subramaniyan A.K., Sun C.T.: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45, 4340–4346 (2008)

    Article  MATH  Google Scholar 

  61. Green A.E., Zerna W.: Theoretical elasticity. Dover publication, New York (1968)

    MATH  Google Scholar 

  62. Naghdi, P.M.: The theory of shells and plates. In: S. Flugge’s Handbuch der physik, Vol. VIa/2 (edited by C. Truesdell) Springer, Berlin (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Imam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatahi-Vajari, A., Imam, A. Torsional vibration of single-walled carbon nanotubes using doublet mechanics. Z. Angew. Math. Phys. 67, 81 (2016). https://doi.org/10.1007/s00033-016-0675-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0675-6

Mathematics Subject Classification

Keywords

Navigation