Skip to main content
Log in

Quantum Euler beam—QUEB: modeling nanobeams vibration

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The theory of vibration of engineering structures belongs to a known chapter of mechanics. Nevertheless, new emerging technologies operating at the smallest scales open a completely new landscape in the field of nanodevices, nanostructured materials as well as biological systems. Nanoscale structures are always involved and characterized by extremely high-frequency vibrations and very small energy, implying quantum effects. This approach, even for simple oscillators, implies both conceptual and mathematical difficulties. It is a matter of fact that the analysis of complex structures, as for example beams and shells, has never been considered in the physical and engineering recent literature in a complete quantum-mechanical context using directly the Schrodinger’s equation. The present paper proposes an attempt in this direction, introducing a quantum Euler beam, the QUEB model at the ground state energy. The idea is to shape a new model for flexural structures that is mathematically similar to those used in classical mechanics, but mimicking the peculiarity of the quantum motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian D., Wagner G.J., Liu W.K., Yu M., Ruoff R.S.: Mechanics of carbon nanotubes. Appl. Mech. Rev. 55(6), 495–533 (2002)

    Article  ADS  Google Scholar 

  2. Mohanty, P.: Quantum Nanomechanics. arXiv:0802.4116v1 [cond-mat.mes-hall] (2008)

  3. Irish E.K., Schwab K.C.: Quantum nanomechanics: a new perspective on the quantum harmonic oscillator. Proc. SPIE 5866, 48 (2005)

    Article  ADS  Google Scholar 

  4. Cleland A.N.: Fundations of Nanomechanics. Springer, New-York (2002)

    Google Scholar 

  5. Gaidarzhy A., Zolfagharkhani G., Badzey R.L., Mohanty P.: Evidence for quantized displacement in macroscopic nanomechanical oscillators. Phys. Rev. Lett. 94, 1–4 (2005)

    Article  Google Scholar 

  6. Katz I., Lifshitz R.: Classical to quantum transition of a driven nonlinear nanomechanical resonator. New J. Phys. 10, 1–10 (2008)

    Article  Google Scholar 

  7. Tolman, R.C.: The Principles of Statistical Mechanics. Dover, New York (1979)

  8. Srednicki M.: Quantum Field Theory. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  9. Barone A., Lombardi F., Rotoli G., Tafuri F.: Macroscopic quantum phenomena in Josephson structures. Fizika Nizkikh Temperature (Low Temper. Phys.) 36, 876 (2010)

    Article  ADS  Google Scholar 

  10. Longobardi L., Massarotti D., Rotoli G., Stornaiuolo D., Papari G., Kawakami A., Pepe G.P., Barone A., Tafuri F.: Quantum crossover in moderately damped epitaxial NbN/MgO/NbN junctions with low critical current density. Appl. Phys. Lett. 99, 062510 (2011)

    Article  ADS  Google Scholar 

  11. Longobardi L., Massarotti D., Stornaiuolo D., Galletti L., Rotoli G., Lombardi F., Tafuri F.: Direct transition from quantum escape to phase diffusion regime in YBaCuO biepitaxial Josephson junctions. Phys. Rev. Lett. 109, 050601 (2012)

    Article  ADS  Google Scholar 

  12. Poincare H.: Memoire sur les courbes definies par les equations differentielles. J. de Mathematiques 37, 375–422 (1881)

    Google Scholar 

  13. Briggs, J.S., Eisfeld, A.: Equivalence of Classical Coupled Oscillators and Quantum Coupled Monomers: Entangled Wavefunctions from Classical Amplitudes. arXiv:1104.4158v1 [quant-ph] (2011)

  14. Bitoun J., Nadeau A., Guyard J., Feix M.R.: A computational procedure for high-order adiabatic invariants. J. Comput. Phys. 12, 315–333 (1973)

    Article  ADS  MATH  Google Scholar 

  15. Guyard J., Nadeau A.: Generalized WKB method through an appropriate canonical transformation giving an exact invariant. J. Phys. 37, 281–284 (1976)

    Article  MathSciNet  Google Scholar 

  16. Korsch H.J.: Dynamical invariants and time—dependent harmonic systems. Phys. Lett. 74, 294–296 (1979)

    Article  MathSciNet  Google Scholar 

  17. Leach P.G.L.: Invariants and wavefunctions for some time-dependent harmonic oscillator-type Hamiltonians. J. Math. Phys. 18, 1902–1907 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  18. Leach P.G.L.: On a generalization of the Lewis invariant for the time-dependent harmonic oscillator. SIAM J. Appl. Math. 34, 496–503 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Leach P.G.L.: Towards an invariant for the time-dependent anharmonic oscillator. J. Math. Phys. 20, 96–100 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Leach P.G.L.: The complete symmetry group of the one-dimensional time-dependent harmonic oscillator. J. Math. Phys. 21, 300–304 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Lutzky M.: Noether’s theorem and the time-dependent harmonic oscillator. Phys. Lett. 68, 3–4 (1978)

    Article  MathSciNet  Google Scholar 

  22. Lutzky M.: Symmetry groups and conserved quantities for the harmonic oscillator. J. Phys. A: Math. Gen. 11, 249–258 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Lutzky M.: Origin of non-Noether invariants.. Phys. Lett. 75, 8–10 (1979)

    Article  MathSciNet  Google Scholar 

  24. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A: Math. Gen. 12, 973–981 (1979)

    Google Scholar 

  25. Briggs J.S., Eisfeld A.: Dynamical symmetries and conserved quantities. Phys. Rev. A 85, 052111 (2012)

    Article  ADS  Google Scholar 

  26. Timoshenko S.P.: History of Strength of Materials. McGraw-Hill, New York (1953)

    Google Scholar 

  27. Berman, G.P., Borgonovi, F., Tsifrinovich, V.I.: Quantum Dynamics of the Oscillating Cantilever-Driven Adiabatic Reversal in Magnetic Resonance Force Microscopy. arXiv:0306107v1 [quant-ph] (2003)

  28. Cleland, A.N., Roukes, M.L.: Fabrication of high frequency nanometer scale mechanical resonator from bulk Si crystal. Appl. Phys. Lett. 69, 2653–2655 (1996)

    Google Scholar 

  29. Kim C., Park J., Blick R.H.: Spontaneous symmetry breaking in two coupled nanomechanical electron shuttles. Phys. Rev. Lett. 105, 067204 (2010)

    Article  ADS  Google Scholar 

  30. Scheible D.V., Blick R.H.: Silicon nano-pillars for mechanical single electron transport. Appl. Phys. Lett. 84, 4632 (2004)

    Article  ADS  Google Scholar 

  31. Blick R., Qin H., Kim H.-S., Marsland R.: A nano-mechanical computer: exploring new avenues of computing. N. J. Phys. 9, 241 (2007)

    Article  Google Scholar 

  32. Scorrano A., Carcaterra A.: Semi-classical modelling of nanomechanical transistors. Mech. Syst. Signal Process. 39(1–2), 489–514 (2013)

    Article  ADS  Google Scholar 

  33. Scorrano A., Carcaterra A.: Investigation of nanomechanical transistors. Meccanica 48(8), 1883–1892 (2013)

    Article  MATH  Google Scholar 

  34. Altenbach H., Eremeyev V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  35. Eremeyev V.A., Altenbach H., Morozov N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54(2), 98–100 (2009)

    Article  ADS  MATH  Google Scholar 

  36. Altenbach H., Eremeyev V.A., Morozov N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)

    Article  MathSciNet  Google Scholar 

  37. Altenbach H., Eremeev V.A., Morozov N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45(3), 331–342 (2010)

    Article  Google Scholar 

  38. Altenbach H., Eremeyev V.A., Morozov N.F.: Linear theory of shells taking into account surface stresses. Doklady Phys. 54(12), 531–535 (2009)

    Article  ADS  Google Scholar 

  39. Chen, J., Ouyang, L., Rulis, P., Misra, A., Ching, W.Y.: Complex nonlinear deformation of nanometer intergranular glassy films in β-Si 3N 4. Phys. Rev. Lett. 95(25), 1–4 (2005)

    Google Scholar 

  40. McKemmish L.K., McKenzie R.H., Hush N.S., Reimers J.R.: Quantum entanglement between electronic and vibrational degrees of freedom in molecules. J. Chem. Phys. 135, 244110 (2011)

    Article  ADS  Google Scholar 

  41. Sarovar M., Ishizaki A., Fleming G.R., Whaley K.B.: Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6, 462–467 (2010)

    Article  Google Scholar 

  42. Sun Y., Luo Z., Fertala A., An K.: Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun. 295(2), 382–386 (2002)

    Article  Google Scholar 

  43. Buehler M.J., Wong S.Y.: Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 93(1), 37–43 (2007)

    Article  ADS  Google Scholar 

  44. Aladin, D.M., Cheung, K.M., Ngan, A.H., Chan, D., Leung, V.Y., Lim, C.T., Luk, K.D., Lu, W.W.: Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. J. Orthop. Res. 28(4), 497–502 (2009)

    Google Scholar 

  45. Fratzl P., Gupta H.S., Paschalis E.P., Roschger P.: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004)

    Article  Google Scholar 

  46. Buehler, M.J.: Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18, 1–9 (2007)

    Google Scholar 

  47. Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM J. Appl. Math. Mech./Zeitschrift Angewandte Mathematik und Mechanik (2012)

  48. Madeo A., Lekszycki T., dell’Isola F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus—Mecanique 339(10), 625–640 (2011)

    ADS  Google Scholar 

  49. Madeo A., George D., Lekszycki T., Nierenberger M., Rèmond Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodeling. Comptes Rendus Mècanique 340(8), 575–589 (2012)

    Article  ADS  Google Scholar 

  50. Rinaldi A.: Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. Phys. Rev. E 83(4–2), 046126 (2011)

    Article  ADS  Google Scholar 

  51. Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. doi:10.1002/zamm.201200182. Published on-line 26th August (2013)

  52. Alibert J.J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  53. dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power. Comptes rendus de l’Acad emie des Sciences Serie IIb, 321, 303–308 (1995)

    Google Scholar 

  54. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach a‘ la D’Alembert, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 63, 1119–1141 (2012)

    Google Scholar 

  55. Madeo, A., dell’Isola, F., Darve, F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61, 2196–2211 (2013)

    Google Scholar 

  56. Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modelling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory. ZAMP. doi:10.1007/s00033-013-0347-8 (2013)

  58. Phelps J.B., Hubbard G.B., Wang X., Agrawal C.M.: Microstructural heterogeneity and the fracture toughness of bone. J. Biomed. Mater. Res. 51, 735–741 (2000)

    Article  Google Scholar 

  59. Jaasma M.J., Bayraktar H.H., Niebur G.L., Keaveny T.M.: Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J. Biomech. 35, 237–246 (2002)

    Article  Google Scholar 

  60. Fantner G.E. et al.: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–616 (2005)

    Article  ADS  Google Scholar 

  61. Rinaldi A.: Bottom-up modeling of damage in heterogeneous quasi- brittle solids. Continuum Mech. Thermodyn. 25(2–4), 359–373 (2013)

    Article  ADS  Google Scholar 

  62. Rinaldi A., Lai Y.C.: Damage theory of 2D disordered lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23, 1796–1825 (2007)

    Article  MATH  Google Scholar 

  63. Rinaldi A., Krajcinovic D., Mastilovic S.: Statistical damage mechanics and extreme value theory. Int. J. Damage Mech. 16(1), 57–76 (2007)

    Article  Google Scholar 

  64. Rinaldi A., Lai Y.-C.: Statistical damage theory of 2D lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23, 1796–1825 (2007)

    Article  MATH  Google Scholar 

  65. Carcaterra, A., Akay, A.: Dissipation in a finite-size bath. Phys. Rev. E 84, 011121 (2011)

    Google Scholar 

  66. Carcaterra A., Akay A.: Theoretical foundation of apparent damping and energy irreversible energy exchange in linear conservative dynamical systems. J. Acoust. Soc. Am. 121(4), 1971–1982 (2007)

    Article  ADS  Google Scholar 

  67. Carcaterra, A., Akay, A., Koç, I.M.: Near-irreversibility in a continuous linear structure with singularity points in its modal density. J. Acoust. Soc. Am. ISSN: 0001-4966 119, p. 2124 (2006)

  68. Roveri N., Carcaterra A., Akay A.: Vibration absorption using non-dissipative complex attachments with impacts and parametric stiffness. J. Acoust. Soc. Am. 126(5), 2306–2314 (2009)

    Article  ADS  Google Scholar 

  69. Roveri N., Carcaterra A., Akay A.: Energy equipartition and frequency distribution in complex attachments. J. Acoust. Soc. Am. 126(1), 122–128 (2009)

    Article  ADS  Google Scholar 

  70. Feynman R.P., Vernon F.L.: Dynamical symmetries and conserved quantities.. Ann. Phys. 24, 118–173 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  71. Luongo A., Paolone A., Di Egidio A.: Multiple timescales analysis for 1:2 and 1:3 resonant hopf bifurcations. Nonlinear Dyn. 34(3–4), 269–291 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  72. Luongo A., Di Egidio A.: Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn. 41, 171–190 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  73. Luongo A., Romeo F.: A Transfer-matrix-perturbation approach to the dynamics of chains of nonlinear sliding beams. J. Vib. Acoust. 128, 190–196 (2006)

    Article  Google Scholar 

  74. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  75. Cazzani A.: On the dynamics of a beam partially supported by an elastic foundation: An exact solution-set. Int. J. Struct. Stab. Dyn. 13(8), 1–30 (2013)

    Article  MathSciNet  Google Scholar 

  76. Oliveto G., Cuomo M.: Incremental analysis of plane frames with geometric and material nonlinearities. Eng. Struct. 10(1), 2–12 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carcaterra.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carcaterra, A. Quantum Euler beam—QUEB: modeling nanobeams vibration. Continuum Mech. Thermodyn. 27, 145–156 (2015). https://doi.org/10.1007/s00161-014-0341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0341-1

Keywords

Navigation