Skip to main content
Log in

An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a new unified class of 3D nonlinear anisotropic finite deformation inelasticity model that (1) exhibits rate-independent or dependent hysteretic response (i.e., response wherein reversal of the external stimuli does not cause reversal of the path in state space) with or without yield surfaces. The hysteresis persists with quasistatic loading. (2) Encompasses a wide range of different types of inelasticity models (such as Mullins effect in rubber, rock and soil mechanics, traditional metal plasticity, hysteretic behavior of shape memory materials) into a simple unified framework that is relatively easy to implement in computational schemes and (3) does not require any a priori particular notion of plastic strain or yield function. The core idea behind the approach is the development of an system of implicit rate equations that allow for the continuity of the response but with different rates along different directions. The theory, which is in purely mechanical setting, subsumes and generalizes many commonly used approaches for hypoelasticity and rate-independent plasticity. We illustrate its capability by modeling the Mullins effect which is the inelastic behavior of certain rubbery materials. We are able to simulate the entire cyclic response without the use of additional internal variables, i.e., the entire response is modeled by using an implicit function of stress and strain measures and their rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saito, T., Furuta, T., Hwang, J.H., Kuramoto, S., Nishino, K., Suzuki, N., Chen, R., Yamada, A., Ito, K., Seno, Y., et al.: Multi functional titanium alloy “gum metal”. In: Materials Science Forum, vol. 426. Trans Tech Publ, pp. 681–688 (2003)

  2. Li T., Morris J. Jr., Nagasako N., Kuramoto S., Chrzan D.: Ideal engineering alloys. Phys. Rev. Lett. 98(10), 105503 (2007)

    Article  Google Scholar 

  3. Tromas C., Villechaise P., Gauthier-Brunet V., Dubois S.: Slip line analysis around nanoindentation imprints in Ti3SnC2: a new insight into plasticity of max-phase materials. Philos. Mag. 91(7-9), 1265–1275 (2011)

    Article  Google Scholar 

  4. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  Google Scholar 

  5. Withey E., Jin M., Minor A., Kuramoto S., Chrzan D., Morris J.: The deformation of gum metal in nanoindentation. Mater. Sci. Eng. A 493(1), 26–32 (2008)

    Article  Google Scholar 

  6. Diani J., Fayolle B., Gilormini P.: A review on the Mullins effect. Eur. Polym. J. 45(3), 601–612 (2009)

    Article  Google Scholar 

  7. Puglisi, G., Saccomandi, G.: Multi-scale modelling of rubber-like materials and soft tissues: an appraisal. Proc. R. Soc. Lond. A 472(2187), 20160060 (2016)

  8. Rajagopal K., Srinivasa A.: Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response. Int. J. Plast. 71, 1–9 (2015)

    Article  Google Scholar 

  9. Srinivasa A.: On the use of the upper triangular (or QR) decomposition for developing constitutive equations for green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  10. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48(4), 279–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rajagopal K., Srinivasa A.: On the response of non-dissipative solids. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 463(2078), 357–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Szabó L., Balla M.: Comparison of some stress rates. Int. J. Solids Struct. 25(3), 279–297 (1989)

    Article  MathSciNet  Google Scholar 

  13. Bernstein B.: Hypo-elasticity and elasticity. Arch. Ration. Mech. Anal. 6(1), 89–104 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Green A.E., Naghdi P.M.: Rate-type constitutive equations and elastic-plastic materials. Int. J. Eng. Sci. 11(7), 725–734 (1973)

    Article  MATH  Google Scholar 

  15. Rajagopal K., Srinivasa A.: On the thermomechanics of materials that have multiple natural configurations part i: viscoelasticity and classical plasticity. Z. für Angew. Math. Phys. ZAMP 55(5), 861–893 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zienkiewicz O.C., Chan A., Pastor M., Schrefler B., Shiomi T.: Computational Geomechanics. Wiley, Chichester (1999)

    MATH  Google Scholar 

  17. Pastor M., Zienkiewicz O., Chan A.: Generalized plasticity and the modelling of soil behaviour. Int. J. Numer. Anal. Methods Geomech. 14(3), 151–190 (1990)

    Article  MATH  Google Scholar 

  18. Thamburaja P., Ekambaram R.: Coupled thermo-mechanical modelling of bulk-metallic glasses: theory, finite-element simulations and experimental verification. J. Mech. Phys. Solids 55(6), 1236–1273 (2007)

    Article  MATH  Google Scholar 

  19. Ogden, R., Roxburgh, D.: A pseudo–elastic model for the Mullins effect in filled rubber. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 455. The Royal Society, pp. 2861–2877 (1999)

  20. Dorfmann A., Ogden R.W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41(7), 1855–1878 (2004)

    Article  MATH  Google Scholar 

  21. Rajagopal K.: Remarks on the notion of pressure. Int. J. Non-Linear Mech. 71, 165–172 (2015)

    Article  Google Scholar 

  22. De Tommasi D., Puglisi G., Saccomandi G.: A micromechanics-based model for the Mullins effect. J. Rheol. (1978-present) 50(4), 495–512 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Srinivasa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal, K.R., Srinivasa, A.R. An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation. Z. Angew. Math. Phys. 67, 86 (2016). https://doi.org/10.1007/s00033-016-0671-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0671-x

Mathematics Subject Classification

Keywords

Navigation