Skip to main content
Log in

Quasilinear Equations Involving Critical Exponent and Concave Nonlinearity at the Origin

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We are interested in quasilinear problems as follows:

$$ \left\{ \begin{array}{ll} -\Delta u -u \Delta (u^2)= -\lambda |u|^{q-2}u+|u|^{22^*-2}u+\mu g(x,u), \quad \mathrm{in}~ \Omega ,\\ u=0,\quad \mathrm{on}~ \partial \Omega , \end{array}\right. $$
(p)

where \(\Omega \subset \mathbb {R}^N \)is a bounded domain with regular boundary \(\partial \Omega , N\ge 3, \lambda , \mu > 0,1<q<4,22^*:=4N/(N-2)\) and g has a subcritical growth and possesses a condition of monotonicity. We prove a regularity result for all weak solutions for a modified problem associated to (p) and, introducing a new type of constraint, we demonstrate a multiplicity result for solutions, including a ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aires, J.F.L., Souto, M.A.S.: Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials. J. Math. Anal. Appl. 416, 924–946 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Func. Anal. 122, 519–543 (1994)

    Article  MathSciNet  Google Scholar 

  3. Borovskii, A.V., Galkin, A.L.: Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP 77(4), 562–573 (1993)

    Google Scholar 

  4. de Bouard, A., Hayashi, N., Saut, J.C.: Global existence ofsmall solutions to a relativistic nonlinear Schrödinger equation. Comm. Math. Phys. 189, 73–105 (1997)

    Article  MathSciNet  Google Scholar 

  5. de Bouard, A., Hayashi, N., Saut, J.C.: Scattering problem and asymptotics for a relativistic nonlinear Schrödinger equation. Nonlinearity 12, 1415–1425 (1999)

    Article  MathSciNet  Google Scholar 

  6. H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, no. 3, (1983), 486–490

  7. Chabrowski, J., Yang, J.: On the Neumann problem with combined nonlinearities. Ann. Polon. Math. 85, 239–250 (2005)

    Article  MathSciNet  Google Scholar 

  8. W. Cintra, E. Medeiros and U. Severo, On positive solutions for a class of quasilinear elliptic equations, Preprint, April, 2019, (arXiv: 1804.00936v1)

  9. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Analysis 56, 213–226 (2004)

    Article  MathSciNet  Google Scholar 

  10. Y. Deng, W. Huang and S. Zhang Ground state solutions for quasilinear Schrödinger equations with critical growth and lower power subcritical perturbation, Adv. Nonlinear Stud., 19 (2019), no. 1, 219–237

  11. De Figueiredo, D.G.: Lectures on The Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Bombay (1989)

    MATH  Google Scholar 

  12. Figueiredo, G.M., Jùnior, J.R.S., Suàrez, A.: Structure of the set of positive solutions of a non-linear Schrödinger equation. Israel Journal of Mathematics 227, 485–505 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kavian, Otared: Introduction à la Thèorie des Points Critiques et Applications aux Problèmes Elliptiques. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  14. Hartmann, B., Zakrzewski, W.J.: Electrons on hexagonal lattices and applications to nanotubes. Phys. Rev. B 68, 184302 (2003)

    Article  Google Scholar 

  15. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Physik B 83–87 (1980)

  16. Kurihura, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Japan 50, 3262–3267 (1981)

    Article  Google Scholar 

  17. Laedke, E.W., Spatschek, K.H., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1983)

    Article  MathSciNet  Google Scholar 

  18. Lange, H., Poppenberg, M., Teismann, H.: Nash-Moser methods for the solution of quasilinear Schrödinger equations. Comm. Partial Differential Equations 24, 1399–1418 (1999)

    Article  MathSciNet  Google Scholar 

  19. Litvak, A.G., Sergeev, A.M.: One dimensional collapse of plasma waves. JETP Lett. 27, 517–520 (1978)

    Google Scholar 

  20. Liu, J., Wang, Y., Wang, Z.: Soliton solutions for quasilinear Schrödinger equations II. J. Differential Equations 187, 473–493 (2003)

    Article  MathSciNet  Google Scholar 

  21. Liu, J., Wang, Y., Wang, Z.-Q.: Solutions for quasilinear Schrödinger equation via Nehari method. Commun. PDE. 29, 879–901 (2004)

    Article  Google Scholar 

  22. Lojasiewicz Jr., S., Zehnder, E.: An inverse function theorem in Frèchet spaces. J. Funct. Anal. 33, 165–174 (1979)

    Article  Google Scholar 

  23. L. A. Maia, J . C. Oliveira Junior and R. Ruviaro, A non-periodic and asymptotically linear indefinite variational problem in RN, Indiana University Mathematics Journal, 66 (2017), no. 1, 31–54

  24. L. A. Maia, J. C. Oliveira Junior and R. Ruviaro, A quasi-linear Schrödinger equation with indefinite potential, Complex Var. Elliptic Equ., 61 (2016), no, 4, 574–586

  25. Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  26. Miyagaki, O.H., Moreira, S.I., Ruviaro, R.: Quasilinear asymptotically linear Schrödinger problem in RN without monotonicity. Electronic Journal of Differential Equations 164, 1–21 (2018)

    MATH  Google Scholar 

  27. Montreanu, D., Montreanu, V.V., Papageorgiou, N.S.: On p-Laplacian equations with concave terms and asymmetric pertubartions. Proc. Roy. Soc. Edinburgh Sect. A 141, 171–192 (2011)

    Article  MathSciNet  Google Scholar 

  28. J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Comm. on pure and app. anal., 8 (2009), 621–644

  29. de Paiva, F.O., Presoto, A.E.: Semilinear elliptic problems with asymmetric nonlinearities. J. Math. Anal. Appl. 409, 254–262 (2014)

    Article  MathSciNet  Google Scholar 

  30. de Paiva, F.O.V., Massa, E.: Multiple solutions for some elliptic equations with a nonlinearity concave at the origin. Nonlinear Anal. 66, 2940–2946 (2007)

    Article  MathSciNet  Google Scholar 

  31. Poppenberg, M., Schmitt, K., Wang, Z.Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differential Equations 14, 329–344 (2002)

    Article  MathSciNet  Google Scholar 

  32. Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Physica A 110, 41–80 (1982)

    Article  MathSciNet  Google Scholar 

  33. Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. 50E(2), 687–689 (1994)

    Google Scholar 

  34. Ruiz, D., Siciliano, G.: Existence of ground states for a nonlinear Schrödinger equation. Nonlinearity 23, 1221–1233 (2010)

    Article  MathSciNet  Google Scholar 

  35. Takeno, S., Homma, S.: Classical planar Heisenberg ferromagnet, complex scalar fields and nonlinear excitations. Progr. Theoret. Phys. 65, 172–189 (1981)

    Article  Google Scholar 

Download references

Acknowledgement

J. C. Oliveira Junior would like to thank very much the Universidade de Brasília for the so pleasant production environment, where all this work was developing. The author also thanks the reviewers for corrections and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.C. Oliveira Junior.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was completed with the support of FAPDF and CNPq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, G.M., Ruviaro, R. & Junior, J.O. Quasilinear Equations Involving Critical Exponent and Concave Nonlinearity at the Origin. Milan J. Math. 88, 295–314 (2020). https://doi.org/10.1007/s00032-020-00315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-020-00315-6

Mathematics Subject Classification (2010)

Keywords

Navigation