Skip to main content
Log in

Strauss’ and Lions’ Type Results in \({BV (\mathbb{R}^N}\)) with an Application to an 1-Laplacian Problem

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work we state and prove versions of some classical results, in the framework of functionals defined in the space of functions of bounded variation in \({\mathbb{R}^N}\). More precisely, we present versions of the Radial Lemma of Strauss, the compactness of the embeddings of the space of radially symmetric functions of BV (\({\mathbb{R}^N}\)) in some Lebesgue spaces and also a version of the Lions Lemma, proved in his celebrated paper of 1984. As an application, we get existence of a nontrivial bounded variation solution of a quasilinear elliptic problem involving the 1−Laplacian operator in \({\mathbb{R}^N}\), which has the lowest energy among all the radial ones. This seems to be one of the very first works dealing with stationary problems involving this operator in the whole space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C.O., Pimenta M.T.O.: On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator. Calc. Var. Partial Differential Equations 56(5), 143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anzellotti G.: The Euler equation for functionals with linear growth. Trans. Amer. Math. Soc. 290(2), 483–501 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch H., Buttazzo G., Michaille G.: Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. MPS-SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  4. Balogh Z., Kristály A.: Lions-type compactness and Rubik actions on the Heisenberg group. Calc. Var. Partial Differential Equations 48(1–2), 89–109 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartle R.: The elements of integration and Lebesgue measure. John Wiley & Sons, New York (1995)

    Book  MATH  Google Scholar 

  6. Chang K.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarke F.: Generalized gradients and applications. Trans. Amer. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dai G.: Non-smooth version of Fountain theorem and its application to a Dirichlet-type differential inclusion problem. Nonlinear Anal. 72, 1454–1461 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Degiovanni M., Magrone P.: Linking solutions for quasilinear equations at critical growth involving the 1-Laplace operator. Calc. Var. Partial Differential Equations 36, 591–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demengel F.: Functions locally almost 1-harmonic. Appl. Anal. 83(9), 865–896 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demengel F.: On some nonlinear partial differential equations involving the 1-Laplacian and critical Sobolev exponent. ESAIM Control Optim. Calc. Var. 4, 667–686 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans L., Gariepy R.: Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992)

    MATH  Google Scholar 

  13. G.M. Figueiredo and M.T.O. Pimenta, Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions, to appear.

  14. Figueiredo G.M., Pimenta M.T.O.: Existence of bounded variation solution for a 1-Laplacian problem with vanishing potentials. J. Math. Anal. Appl. 459, 861–878 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giusti E.: Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984)

    Book  MATH  Google Scholar 

  16. B. Kawohl and F. Schuricht , Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem, Commun. Contemp. Math. 9, no. 4, 525–543.

  17. Kobayashi J., Ôtani M.: The principle of symmetric criticality for nondifferentiable mappings. J. Funct. Anal. 214, 428–449 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions P.L.: The concentration-compactness principle in the Calculus ov Variations. The Locally compact case, part 2. Annales Inst. H. Poincaré Section C 1, 223–283 (1984)

    Article  MATH  Google Scholar 

  19. Leon S., Webler C.: Global existence and uniqueness for the inhomogeneous 1-Laplace evolution equation. NoDEA Nonlinear Differential Equations Appl. 22, 1213–1246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rabinowitz P.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Squassina M.: On Palais’ principle for non-smooth functionals. Nonlinear Anal. 74, 3786–3804 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Strauss W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szulkin A.: Minimax principle for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré 3(2), 77–109 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos T. O. Pimenta.

Additional information

Giovany M. Figueiredo was partially supported by FAPESP and CNPq, Brazil. Marcos T.O. Pimenta was supported by FAPESP 2017/01756-2 and CNPq 442520/2014-0, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, G.M., Pimenta, M.T.O. Strauss’ and Lions’ Type Results in \({BV (\mathbb{R}^N}\)) with an Application to an 1-Laplacian Problem. Milan J. Math. 86, 15–30 (2018). https://doi.org/10.1007/s00032-018-0277-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-018-0277-1

Mathematics Subject Classification (2010)

Keywords

Navigation