Skip to main content
Log in

On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this work we use variational methods to prove results on existence and concentration of solutions to a problem in \(\mathbb {R}^N\) involving the 1-Laplacian operator. A thorough analysis on the energy functional defined in the space of functions of bounded variation \(BV(\mathbb {R}^N)\) is necessary, where the lack of compactness is overcome by using the Concentration of Compactness Principle due to Lions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  MATH  Google Scholar 

  2. Anzellotti, G.: The Euler equation for functionals with linear growth. Trans. Am. Math. Soc. 290(2), 483–501 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  4. Bartle, R.: The Elements of Integration and Lebesgue Measure. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  5. Chang, K.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, K.: The spectrum of the 1-Laplace operator. Commun. Contemp. Math. 9(4), 515–543 (2009)

    MathSciNet  Google Scholar 

  7. Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1–13 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)

    Article  MATH  Google Scholar 

  9. Clarke, F.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Degiovanni, M., Magrone, P.: Linking solutions for quasilinear equations at critical growth involving the 1-Laplace operator. Calc. Var. Partial Differ. Equ. 36, 591–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  12. Figueiredo, G.M., Pimenta, M.T.O.: Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions. arXiv:1704.03748v1 [math.AP]

  13. Figueiredo, G.M., Pimenta, M.T.O.: Strauss’ and Lions’ type results in \(BV(\mathbb{R}^N)\) with an application to 1-Laplacian problem. arXiv:1610.07369v1

  14. Figueiredo, G.M., Pimenta, M.T.O.: Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials. arXiv:1609.06683

  15. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. Partial Differ. Equ. 21(5–6), 787–820 (1996)

    Article  MATH  Google Scholar 

  17. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)

    Book  MATH  Google Scholar 

  18. Jianfu, Y., Xiping, Z.: On the existence of nontrivial solution of quasilinear elliptic boundary value problem for unbounded domains. Acta Math. Sci. 7(3), 341–359 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Kawohl, B., Schuricht, F.: Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem. Commun. Contemp. Math. 9(4), 525–543 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The Locally compact case, part 2. Analles Inst. H. Poincaré Sect. C 1, 223–283 (1984)

    Article  MATH  Google Scholar 

  21. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131(2), 223–253 (1990)

    Article  MATH  Google Scholar 

  22. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szulkin, A.: Minimax principle for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré 3(2), 77–109 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153(2), 229–244 (1993)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

M.T.O. Pimenta has been supported by FAPESP 2017/01756-2 and CNPq/Brazil 442520/2014-0. C.O. Alves was partially supported by CNPq/Brazil 304036/2013-7 and INCT-MAT. The authors would like to thank to the referee for his/her important comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos T. O. Pimenta.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Pimenta, M.T.O. On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator. Calc. Var. 56, 143 (2017). https://doi.org/10.1007/s00526-017-1236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1236-3

Mathematics Subject Classification

Navigation