Skip to main content
Log in

Bounded reductive subalgebras of \( \mathfrak{s}{\mathfrak{l}_n} \)

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let \( \mathfrak{g} \) be a reductive Lie algebra and \( \mathfrak{k} \subset \mathfrak{g} \) be a reductive in \( \mathfrak{g} \) subalgebra. A (\( \mathfrak{g},\mathfrak{k} \))-module M is a \( \mathfrak{g} \)-module for which any element mM is contained in a finite-dimensional \( \mathfrak{k} \)-submodule of M. We say that a (\( \mathfrak{g},\mathfrak{k} \))-module M is bounded if there exists a constant C M such that the Jordan-Hölder multiplicities of any simple finite-dimensional \( \mathfrak{k} \)-module in every finite-dimensional \( \mathfrak{k} \)-submodule of M are bounded by C M . In the present paper we describe explicitly all reductive in \( \mathfrak{s}{\mathfrak{l}_n} \) subalgebras \( \mathfrak{k} \) which admit a bounded simple infinite-dimensional (\( \mathfrak{s}{\mathfrak{l}_n},\mathfrak{k} \))-module. Our technique is based on symplectic geometry and the notion of spherical variety. We also characterize the irreducible components of the associated varieties of simple bounded (\( \mathfrak{g},\mathfrak{k} \))-modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Benson, G. Ratcliff, A classification of multiplicity free actions, J. Algebra 181 (1996), 152–186.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Boston, 1997.

    MATH  Google Scholar 

  3. J. Dixmier, Algébres Enveloppantes, Gauthier-Villars, Paris, 1974. Russian transl.: Ж. Диксмье, Унцверсальные обёртывающце алгебры, Мир, М., 1978.

  4. S. Fernando, Lie algebra modules with finite dimensional weight spaces, I, Trans. Amer. Math. Soc. 322 (1990), 757–781.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 (1981), 445–468.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190–213.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Kac, Constructing groups associated to infinite dimensional Lie algebras, in: Infinite Dimensional Groups with Applications (Berkeley, Calif., 1984), Math. Sci. Res. Inst. Publ., Vol. 4, Springer-Verlag, New York, 1985, pp. 167{216.

  8. A. Knapp, D. Vogan, Cohomological Induction and Unitary Representations, Princeton Mathematical Series, Vol. 45, Princeton University Press, Princeton, 1995.

    Google Scholar 

  9. A. Leahy, A classification of multiplicity free representations, J. of Lie Theory 8 (1998), 376–391.

    MathSciNet  Google Scholar 

  10. I. Losev, Algebraic Hamiltonian actions, Math. Z. 263 (2009), 685–723.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Mathieu, Classification of irreducible weight modules, Ann. de l'Inst. Fourier 50 (2000), 537–592.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth Verlag, Leipzig, 1994.

    MATH  Google Scholar 

  13. D. Panyushev, On the conormal bundles of a G-stable subvariety, Manuscr. Math. 99 (1999), 185–202.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Penkov, V. Serganova, On bounded generalized Harish-Chandra modules, Ann. de l'Inst. Fourier, to appear, arxiv:0710.0906.

  15. I. Penkov, G. Zuckerman, Generalized Harish-Chandra modules with generic minimal \( \mathfrak{k} \)-type, Asian J. Math. 8 (2004), 795–812.

    MathSciNet  MATH  Google Scholar 

  16. I. Penkov, V. Serganova, G. Zuckerman, On the existence of (\( \mathfrak{g},\mathfrak{k} \))-modules of finite type, Duke Math. J. 125 (2004), 329–349.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc. 6 (1974), 21–24.

    Article  MathSciNet  MATH  Google Scholar 

  18. Э. Б. Винберг, Коммутатцвные однородные ц коцзотропные сцмплектцческце действця, YMH 56 (2001), no. 1(337), 3–62. Engl. transl.: É. B. Vinberg, Commutative homogeneous spaces and co-isotropic symplectic actions, Russian Math. Surveys 56 (2001), 1–60.

    Google Scholar 

  19. Engl. transl.: É. B. Vinberg, B. Kimel’fel’d, Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups, Funct. Anal. Appl. 12 (1979), 168–174.

    Google Scholar 

  20. A. Onishchik, É. Vinberg, Lie Groups and Algebraic Groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Petukhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petukhov, A.V. Bounded reductive subalgebras of \( \mathfrak{s}{\mathfrak{l}_n} \) . Transformation Groups 16, 1173–1182 (2011). https://doi.org/10.1007/s00031-011-9152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9152-7

Keywords

Navigation