Skip to main content
Log in

Positive solutions for nonlinear schrödinger–poisson systems with general nonlinearity

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study a class of Schrödinger-Poisson (SP) systems with general nonlinearity where the nonlinearity does not require Ambrosetti-Rabinowitz and Nehari monotonic conditions. We establish new estimates and explore the associated energy functional which is coercive and bounded below on Sobolev space. Together with Ekeland variational principle, we prove the existence of ground state solutions. Furthermore, when the ‘charge’ function is greater than a fixed positive number, the (SP) system possesses only zero solutions. In particular, when ‘charge’ function is radially symmetric, we establish the existence of three positive solutions and the symmetry breaking of ground state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alves, C.O., Souto, M.A.S., Soares, S.H.M.: Schrö dinger-Poisson equations without Ambrosetti-Rabinowitz condition. J. Math. Anal. Appl. 377, 584–592 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A.: On the Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrö dinger-Poisson problem. Commun. Contemp. Math. 10, 39–404 (2008)

    Article  Google Scholar 

  4. Azzollini, A.: Concentration and compactness in nonolinear Schr ödinger-Poisson system with a general nonlinearity. J. Differential Equations 249, 1746–1763 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrö dinger-Maxwell equations under the effect of a genral nonlinear term. Ann. Mat. Pura Appl. 27, 779–791 (2010)

    MATH  Google Scholar 

  6. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrö dinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrö dinger equations with a general nonlinearity. Arch. Ration. Mech. Anal 185, 185–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cortázar, C., Elgueta, M., Felmer, P.: Uniqueness of positive solution of \(\Delta u-u+u^{p}=0\) in \(\mathbb{R}^{N}, N\ge 3,\) Arch. Rational Mech. Anal. 142, 127–141 (1998)

    MATH  Google Scholar 

  11. Chen, C.C., Lin, C.S.: Uniqueness of the ground state solution of \(\Delta u+f\left( u\right) =0\) in \(\mathbb{R}^{N}, n\ge 3,\) Commun. Partial Differ. Equ. 16, 1549–1572 (1991)

    Article  Google Scholar 

  12. Coffman, C.V.: Uniqueness of the ground state solution for \( \Delta u-u+u^{3}=0\) and a variational characterization of other solutions. Arch. Ration. Mech. Anal. 46, 81–95 (1972)

    Article  MATH  Google Scholar 

  13. Cerami, G., Molle, R.: Positive bound state solutions for some Schrödinger-Poisson systems. Nonlinearity 29, 3103–3119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cerami, G., Molle, R.: Multiple positive bound states for critical Schrödinger-Poisson systems. ESAIM: COCV 25, 73 (2019)

    MATH  Google Scholar 

  15. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differential Equations 248, 521–543 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dutko, T., Mercuri, C., Tyler, T.M.: Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger-Poisson systems. Calc. Var. 60, 174 (2021)

    Article  MATH  Google Scholar 

  17. Du, M., Tian, L., Wang, J., Zhang, F.: Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well. J. Math. Phys. 57, 031502 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 17, 324–353 (1974)

    Article  MATH  Google Scholar 

  19. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  20. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^{N}\),. In: Nachbin, L. (ed.) Math. Anal. Appli. Part A, Advances in Math. Suppl. Studies, vol. 7A, pp. 369–402. Academic Press, Newyork (1981)

  22. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jang, J.: Uniqueness of positive radial solutions of \(\Delta u+f\left( u\right) =0\) in \(\mathbb{R}^{N}\), \(N\ge 2,\). Nonlinear Anal. 73, 189–2198 (2010)

    Article  Google Scholar 

  24. Kwong, M.K.: Uniqueness of positive solution of \(\Delta u-u+u^{p}=0\) in \(\mathbb{R}^{N}\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  Google Scholar 

  25. Kwong, M.K., Zhang, L.Q.: Uniqueness of the positive solution of \( \Delta u+f\left( u\right) =0\) in an annulus. Differ. Integral Equ. 4, 583–599 (1991)

    Google Scholar 

  26. Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Commun. Partial. Differential Equations 16, 585–615 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part I. Ann. Inst. H. Poincaré Anal. Non Linéire 1, 109–149 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéire 1, 223–283 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions, P.-L.: Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33–97 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lewin, M., Rota Nodari, S.: The double-power nonlinear Schrö dinger equation and its generalizations: uniqueness, non-degeneracy and applications. Calc. Var. 59, 197 (2020)

    Article  MATH  Google Scholar 

  31. McLeod, K.: Uniqueness of positive radial solutions of \(\Delta u+f\left( u\right) =0\) in \(\mathbb{R}^{n}, II\). Trans. Amer. Math. Soc. 339, 495–505 (1993)

    MathSciNet  MATH  Google Scholar 

  32. McLeod, K., Serrin, J.: Uniqueness of positive radial solutions of \(\Delta u+f\left( u\right) =0\). Arch. Rational Mech. Anal. 99, 115–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mercuri, C., Moroz, V., Van Schaftingen, J.: Goundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency. Calc. Var. 55, 146 (2016)

    Article  MATH  Google Scholar 

  34. Mercuri, C., Tyler, T.M.: On a class of nonlinear Schrö dinger-Poisson systems involving a nonradial charge density. Rev. Mat. Iberoam. 36(4), 1021–1070 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Palais, R.: The Principle of symmetric criticality. Comm. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peletier, L.A., Serrin, J.: Uniqueness of positive solutions of semilinear equations in \(\mathbb{R}^{n}\). Arch. Ration. Mech. Anal. 81, 181–197 (1983)

    Article  MATH  Google Scholar 

  37. Pucci, P., Serrin, J.: Uniqueness of ground states for quasilinear elliptic operators. Indiana Univ. Math. J. 47, 501–528 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, (1986)

  39. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shuai, W., Wang, Q.: Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in \(\mathbb{R}^{3}\). Z. Angew. Math. Phys. 66, 3267–3282 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Serrin, J., Tang, M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49, 897–923 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sun, J., Wu, T.F., Feng, Z.: Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system. J. Differential Equations 260, 586–627 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sun, J., Wu, T.F., Feng, Z.: Non-autonomous Schrö dinger-Poisson problem in \(\mathbb{R}^{3}\). Discrete Contin. Dyn. Syst. 38, 1889–1933 (2018)

    Article  MathSciNet  Google Scholar 

  44. Sun, J., Wu, T.F., Feng, Z.: Two positive solutions to non-autonomous Schrödinger-Poisson systems. Nonlinearity 32, 4002–4032 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vaira, G.: Ground states for Schrödinger-Poisson type systems. Ric. Mat. 60, 263–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Z., Zhou, H.: Positive solution for a nonlinear stationary Schrödinger-Poisson system in \(\mathbb{R}^{3}\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu, T.F.: Existence and symmetry breaking of ground state solutions for Schrödinger-Poisson systems. Calc. Var. 60, 59 (2021)

    Article  MATH  Google Scholar 

  48. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J. Differential Equations 255, 1–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhao, L., Zhao, F.: On the existence of solutions for the Schr ödinger-Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  Google Scholar 

  50. Zhang, J.: On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear. Analysis 75, 6391–6401 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, J., do Ò, J.M., Squassina, M.: Schrödinger–Poisson systems with a general critical nonlinearity. Commun. Contemp. Math. 19, 1650028 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported in part by the Ministry of Science and Technology, Taiwan (Grant No. 110-2115-M-390-006-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-fang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let

$$\begin{aligned} \mathbf {A}_{0}:= & {} \left\{ u\in H_{r}^{1}\left( \mathbb {R}^{3}\right) :\int _{ \mathbb {R}^{3}}F\left( u\right) dx-\frac{1}{2}\left\| u\right\| _{H^{1}}^{2}>0\right\} ; \\ \overline{\mathbf {A}}_{0}:= & {} \left\{ u\in H^{1}\left( \mathbb {R}^{3}\right) :\int _{\mathbb {R}^{3}}f\left( u\right) udx-\left\| u\right\| _{H^{1}}^{2}>0\right\} \end{aligned}$$

and

$$\begin{aligned} \Lambda _{0}:= & {} \sup _{u\in \mathbf {A}_{0}}\frac{\int _{\mathbb {R} ^{3}}F\left( u\right) dx-\frac{1}{2}\left\| u\right\| _{H^{1}}^{2}}{ \int _{\mathbb {R}^{3}}\phi _{u}u^{2}dx}; \\ \overline{\Lambda }_{0}:= & {} \sup _{u\in \overline{\mathbf {A}}_{0}}\frac{\int _{ \mathbb {R}^{3}}f\left( u\right) udx-\left\| u\right\| _{H^{1}}^{2}}{ \int _{\mathbb {R}^{3}}\phi _{u}u^{2}dx}. \end{aligned}$$

Then we have the following results.

Theorem A.1

Suppose that conditions \(\left( F1\right) \) and \(\left( F2\right) \) hold. Then we have

\(\left( i\right) \) \(\mathbf {A}_{0}\) is a nonempty set.

\(\left( ii\right) \) \(0<\Lambda _{0}<\infty .\)

Proof

\(\left( i\right) \) If \(q=2,\) then by \(a_{q}>1\) and Fatou’s lemma, for \(u\in H_{r}^{1}\left( \mathbb {R}^{3}\right) \) with \(\left\| u\right\| _{H^{1}}^{2}-a_{q}\int _{\mathbb {R}^{3}}u^{2}dx<0,\) we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{1}{t^{2}}\left[ \frac{1}{2}\left\| tu\right\| _{H^{1}}^{2}-\int _{\mathbb {R}^{3}}F\left( tu\right) dx\right] =2\left( \left\| u\right\| _{H^{1}}^{2}-a_{q}\int _{\mathbb {R} ^{3}}u^{2}dx\right) <0, \end{aligned}$$

and so there exists \(e\in H_{r}^{1}\left( \mathbb {R}^{3}\right) \) such that

$$\begin{aligned} \int _{\mathbb {R}^{3}}F\left( e\right) dx-\frac{1}{2}\left\| e\right\| _{H^{1}}^{2}>0. \end{aligned}$$

If \(2<q<3,\) then by \(a_{q}>0\) and Fatou’s lemma, for \(u\in H_{r}^{1}\left( \mathbb {R}^{3}\right) \setminus \left\{ 0\right\} ,\) we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{1}{t^{q}}\left[ \frac{1}{2}\left\| tu\right\| _{H^{1}}^{2}-\int _{\mathbb {R}^{3}}F\left( tu\right) dx\right] =-a_{q}\int _{\mathbb {R}^{3}}\left| u\right| ^{q}dx<0, \end{aligned}$$

and so there exists \(\widehat{e}\in H_{r}^{1}\left( \mathbb {R}^{3}\right) \) such that

$$\begin{aligned} \int _{\mathbb {R}^{3}}F\left( \widehat{e}\right) dx-\frac{1}{2}\left\| \widehat{e}\right\| _{H^{1}}^{2}>0. \end{aligned}$$

This implies that \(\mathbf {A}_{0}\) is nonempty.

\(\left( ii\right) \) For each \(u\in \mathbf {A}_{0}\) there exists \(\lambda ^{*}>0\) such that

$$\begin{aligned} \frac{1}{2}\left\| u\right\| _{H^{1}}^{2}+\frac{\lambda ^{*}}{4} \int _{\mathbb {R}^{3}}\phi _{u}u^{2}dx-\int _{\mathbb {R}^{3}}F\left( u\right) dx<0 \end{aligned}$$

or

$$\begin{aligned} \frac{\lambda ^{*}}{4}<\frac{\int _{\mathbb {R}^{3}}F\left( u\right) dx- \frac{1}{2}\left\| u\right\| _{H^{1}}^{2}}{\int _{\mathbb {R}^{3}}\phi _{u}u^{2}dx}, \end{aligned}$$

indicating that there exists \(\widehat{\lambda }^{*}>0\) such that \( \Lambda _{0}\ge \widehat{\lambda }^{*}.\) Next, we show that \(0<\Lambda _{0}<\infty .\) By conditions \(\left( F1\right) \) and \(\left( F2\right) ,\) there exists \(C_{1}>0\) such that

$$\begin{aligned} F\left( u\right) \le \frac{1}{2}u^{2}+C_{1}\left| u\right| ^{3}. \end{aligned}$$
(A.1)

Since

$$\begin{aligned} C_{1}\int _{\mathbb {R}^{3}}\left| u\right| ^{3}dx= & {} C_{1}\int _{ \mathbb {R}^{3}}\left( -\Delta \phi _{u}\right) \left| u\right| dx=C_{1}\int _{\mathbb {R}^{3}}\left\langle \nabla \phi _{u},\nabla \left| u\right| \right\rangle dx \\\le & {} \frac{1}{2}\int _{\mathbb {R}^{3}}\left| \nabla u\right| ^{2}dx+ \frac{C_{1}^{2}}{2}\int _{\mathbb {R}^{3}}\left| \nabla \phi _{u}\right| ^{2}dx \\= & {} \frac{1}{2}\int _{\mathbb {R}^{3}}\left| \nabla u\right| ^{2}dx+ \frac{C_{1}^{2}}{2}\int _{\mathbb {R}^{3}}\phi _{u}u^{2}dx\text { for all }u\in H^{1}(\mathbb {R}^{3}), \end{aligned}$$

by (A.1), we have

$$\begin{aligned} \frac{\int _{\mathbb {R}^{3}}F\left( u\right) dx-\frac{1}{2}\left\| u\right\| _{H^{1}}^{2}}{\int _{\mathbb {R}^{3}}\phi _{u}u^{2}dx}\le & {} \frac{C_{1}^{2}}{2}\times \frac{\frac{1}{2}\int _{\mathbb {R} ^{3}}u^{2}dx+C_{1}\int _{\mathbb {R}^{3}}\left| u\right| ^{3}dx-\frac{1 }{2}\left\| u\right\| _{H^{1}}^{2}}{C_{1}\int _{\mathbb {R} ^{3}}\left| u\right| ^{3}dx-\frac{1}{2}\int _{\mathbb {R} ^{3}}\left| \nabla u\right| ^{2}dx} \\\le & {} \frac{C_{1}^{2}}{2}\times \frac{C_{1}\int _{\mathbb {R}^{3}}\left| u\right| ^{3}dx-\frac{1}{2}\int _{\mathbb {R}^{3}}\left| \nabla u\right| ^{2}dx}{C_{1}\int _{\mathbb {R}^{3}}\left| u\right| ^{3}dx-\frac{1}{2}\int _{\mathbb {R}^{3}}\left| \nabla u\right| ^{2}dx} \\= & {} \frac{C_{1}^{2}}{2}. \end{aligned}$$

Thus,

$$\begin{aligned} 0<\Lambda _{0}:=\sup _{u\in \mathbf {A}_{0}}\frac{\int _{\mathbb {R}^{3}}F\left( u\right) dx-\frac{1}{2}\left\| u\right\| _{H^{1}}^{2}}{\int _{\mathbb {R} ^{3}}\phi _{u}u^{2}dx}\le \frac{C_{1}^{2}}{2}. \end{aligned}$$

This completes the proof. \(\square \)

Theorem A.2

Suppose that conditions \(\left( F1\right) \) and \(\left( F2\right) \) hold. Then we have

\(\left( i\right) \) \(\overline{\mathbf {A}}_{0}\) is a nonempty set.

\(\left( ii\right) \) \(0<\overline{\Lambda }_{0}<\infty .\)

Proof

The proof is similar to the argument used in Theorem A.1 and is omitted here. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Cy., Wu, Tf. Positive solutions for nonlinear schrödinger–poisson systems with general nonlinearity. Nonlinear Differ. Equ. Appl. 29, 58 (2022). https://doi.org/10.1007/s00030-022-00791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00791-2

Keywords

Mathematics Subject Classification

Navigation