Skip to main content
Log in

Delay equation formulation of a cyclin-structured cell population model

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

The aim of this paper is to derive a system of two renewal equations from individual-level assumptions concerning a cyclin-structured cell population. Nonlinearity arises from the assumption that the rate at which quiescent cells become proliferating is determined by feedback. In fact, we assume that this rate is a nonlinear function of a weighted population size. We characterize steady states and establish the validity of the principle of linearized stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell G.I., Anderson E.C. (1967) Cell growth and division. A mathematical model with applications to cell volume distributions in mammalian suspension culture. Biophys. J. 7: 329–351

    Article  Google Scholar 

  2. Bekkal Brikci F., Clairambault J., Ribba B., Perthame B. (2008) An age-and-cyclin-structured cell population model with proliferation and quiescence. J. Math. Biol. 57(1): 91–110

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Bekkal Brikci, J. Clairambault, B. Perthame (2008) Analysis of a molecular structured population model with possible polinomial growth for the cell division cycle. Math. Comput. Model. 47(7–8):699–713.

  4. R. Borges, À. Calsina, S. Cuadrado (2009) Equilibria of a cyclin structured cell population model. Discrete Contin. Dyn. Syst. Ser. B 11:613–627.

  5. R. Borges, À. Calsina, S. Cuadrado (2011) Oscillations in a molecular structured cell population model. Nonlinear Anal. Real World Appl. 12(4):1911–1922.

  6. P. L. Butzer, H. Berens (1967) Semi-Groups of Operators and Approximation, Springer, Berlin, Heidelberg, New York.

  7. A. M. de Roos, O. Diekmann, P. Getto, M.A. Kirkilionis (2010) Numerical equilibrium analysis for structured consumer resource models. Bull. Math. Biol. 72 no. 2:259–297.

  8. O. Diekmann, M. Gyllenberg, J.A.J. Metz, S. Nakaoka and A.M. de Roos (2010) Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math. Biol. 61 no. 2:277–318.

  9. O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.O. Walther (1995) Delay Equations: Functional, Complex and Nonlinear Analysis, Springer, Berlin, Heidelberg, New York.

  10. O. Diekmann, P. Getto, M. Gyllenberg (2007) Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. SIAM J. Math. Anal. 39(4):1023–1069.

  11. O. Diekmann, M. Gyllenberg (2008) Abstract delay equations inspired by population dynamics. In Functional analysis and evolution equations. Amann, H., Arendt, W., Hieber, M., Neubrander, F., Nicaise, S. and von Below, J. (Eds.) Birkhauser, Basel, 187–200.

  12. O. Diekmann, M. Gyllenberg, H. Thieme, S. Verduyn Lunel (1993) A cell-cycle model revisited. CWI Report AM-R9305.

  13. O. Diekmann, M. Gyllenberg (2012) Equations with infinite delay: blending the abstract and the concrete. J. Differential Equations 252(2):819–851.

  14. G. Greiner, J.M.A.M. van Neerven (1992) Adjoints of semigroups acting on vector valued function spaces. Israel Journal of Mathematics 77:305–333.

  15. G. Gripenberg, S.O. Londen, O. Staffans (1990) Volterra integral and functional equations. Cambridge University Press.

  16. M. Gyllenberg, G. Webb (1987) Age-size structure in populations with quiescence. Math. Biosci. 86:67–95.

  17. M. Gyllenberg, G. Webb (1990) A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28:671–694.

  18. E. Hille, R.S. Phillips (1957) Functional analysis and semigroups. Providence, R.I.: AM. Math. Soc.

  19. J. van Neerven (1992)The adjoint of a semigroup of linear operators Lecture Notes in Mathematics, 1529. Springer-Verlag, Berlin.

  20. J. Prüss (1981) Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol. 11 no. 1:65–84.

  21. W.M. Ruess (2008) Linearized stability and regularity for nonlinear age-dependent population models. Functional analysis and evolution equations, Amann, H., Arendt, W., Hieber, M., Neubrander, F., Nicaise, S. and von Below, J. (Eds.) Birkhauser, Basel 561–576.

  22. Sinko J.W., Streifer W. (1971) A model for populations reproducing by fission. Ecology 52: 330–335

    Article  Google Scholar 

  23. H. Von Foerster (1959) Some remarks on changing populations. The Kinetics of Cellular Proliferation, 382–407, (Frederick Stohlman, ed.), Grune and Stratton, New York.

  24. G.F. Webb (1985) Theory of nonlinear age-dependent population dynamics. Monographs and Textbooks in Pure and Applied Mathematics, 89. Marcel Dekker, Inc., New York.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia Cuadrado.

Additional information

R. Borges, À. Calsina and S. Cuadrado were partially supported by the Ministerio de Ciencia e Innovación, Grant MTM2011-27739-C04-02, and by the Agència de Gestió d’Ajuts Universitaris i de Recerca-Generalitat de Catalunya, Grant 2009-SGR-345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, R., Calsina, À., Cuadrado, S. et al. Delay equation formulation of a cyclin-structured cell population model. J. Evol. Equ. 14, 841–862 (2014). https://doi.org/10.1007/s00028-014-0241-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0241-7

Mathematics Subject Classification

Keywords

Navigation