Skip to main content

Advertisement

Log in

Community responses to dam removal in a subtropical mountainous stream

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Dam removal has the potential to efficiently solve the problems caused by fragmented stream habitats but may simultaneously cause negative impacts on biotic communities. To conserve the critically endangered Formosan landlocked salmon (Oncorhynchus masou formosanus), a 15-m-tall check dam was partially removed from the Chichiawan Stream at the end of May 2011, before the flood season. Using this dam removal experience, we aimed to cast dam removal as an action comparable to a natural flood event. We applied a before-after-control-impact (BACI) design and quantified the environmental factors and major biotic communities at four sampling sites in the stream bimonthly before (2010) and after (2012 and 2013) the dam removal and monthly in the year of the dam removal (2011). After the dam removal, a faster current velocity and more turbid water were observed at the downstream sites, and the area’s deposition consisted of small-grained sediments. Despite this, our results show that the dam removal was performed during a suitable period. There was no obvious influence on tadpoles as they metamorphosed into adult frogs and left the stream before the dam removal. Fish exhibited a greater resistance to the alteration in flow resulting from the dam removal. An increase in fish abundance at the upstream sites after the dam removal suggests that the corridors created by the dam removal allowed access to more habitats for the fish. In particular, the periphyton biomass and aquatic insect densities decreased markedly at the downstream sites after the dam removal, but they recovered within a year, demonstrating the resilience of these taxa. Coleoptera, Plecoptera and Trichoptera were more resistant than the periphyton, Diptera and Ephemeroptera after the dam removal and an extreme flood event. In conclusion, the responses of stream communities to dam removal were similar to the responses to an extreme flood event. To mitigate the impacts caused by dam removal, our results suggest that stream communities may respond to dam removal as a natural flow alteration if the timing of the dam removal occurs just before the flood season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Bednarek AT (2001) Undamming rivers: a review of the ecological impacts of dam removal. Environ Manag 27:803–814. doi:10.1007/s002670010189

    Article  CAS  Google Scholar 

  • Bowes MJ, Leach DV, House WA (2005) Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK. Sci Total Environ 336:225–241. doi:10.1016/j.scitotenv.2004.05.026

    Article  CAS  PubMed  Google Scholar 

  • Brewin PA, Buckton ST, Ormerod SJ (2000) The seasonal dynamics and persistence of stream macroinvertebrates in Nepal: do monsoon floods represent disturbance? Freshw Biol 44:581–594. doi:10.1046/j.1365-2427.2000.00608.x

    Article  Google Scholar 

  • Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30:492–507. doi:10.1007/s00267-002-2737-0

    Article  Google Scholar 

  • Chen CH (2012) Effects of dam removal on resident fish movement in Cijiawan River, Taiwan. Dissertation, University of Washington, USA

  • Chiu MC, Kuo MH (2012) Application of r/K selection to macroinvertebrate responses to extreme floods. Ecol Entomol 37:145–154. doi:10.1111/j.1365-2311.2012.01346.x

    Article  Google Scholar 

  • Chiu MC, Kuo MH, Chang HY, Lin HJ (2016) Bayesian modeling of the effects of extreme flooding and the grazer community on algal biomass dynamics in a monsoonal Taiwan stream. Microb Ecol 72:372–380. doi:10.1007/s00248-016-0791-z

    Article  CAS  PubMed  Google Scholar 

  • Chung LC, Lin HJ, Yo SP, Tzeng CS, Yeh CH, Yang CH (2008) Relationship between the Formosan landlocked salmon Oncorhynchus masou formosanus population and the physical substrate of its habitat after partial dam removal from Kaoshan Stream, Taiwan. Zool Stud 47:25–36.

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/ tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC.

    Google Scholar 

  • Connolly NM, Crossland MR, Pearson RG (2004) Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. J N Am Benthol Soc 23:251–270. doi:10.1899/0887-3593(2004)023<0251:EOLDOO>2.0.CO;2

    Article  Google Scholar 

  • Dauble DD, Hanrahan TP, Geist DR, Parsley MJ (2003) Impacts of the Columbia River hydroelectric system on main-stem habitats of fall Chinook salmon. North Am J Fish Manag 23:641–659. doi:10.1577/M02-013

    Article  Google Scholar 

  • Douglas I, Spencer T, Greer T, Bidin K, Sinun W, Meng WW (1992) The impact of selective commercial logging on stream hydrology, chemistry and sediment loads in the Ulu Segama Rain-Forest, Sabah, Malaysia. Philos Trans R Soc B 335:397–406. doi:10.1098/rstb.1992.0031

    Article  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190. http://www.jstor.org/stable/3890061. Accessed 23 Sept 1960

    Google Scholar 

  • Hart DD, Johnson TE, Bushaw-Newton KL, Horwitz RJ, Bednarek AT, Charles DF, Kreeger DA, Velinsky DJ (2002) Dam removal: challenges and opportunities for ecological research and river restoration. Bioscience 52:669–681. doi:10.1641/0006-3568(2002)052[0669:DRCAOF]2.0.CO;2

    Article  Google Scholar 

  • Holomuzki JR, Biggs BJF (2000) Taxon-specific responses to high-flow disturbance in streams: implications for population persistence. J N Am Benthol Soc 19:670–679. doi:10.2307/1468125

    Article  Google Scholar 

  • Hooke JM (2016) Geomorphological impacts of an extreme flood in SE Spain. Geomorphology 263:19–38. doi:10.1016/j.geomorph.2016.03.021

    Article  Google Scholar 

  • Humphries P, King AJ, Koehn JD (1999) Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray-Darling River system, Australia. Environ Biol Fish 56:129–151. doi:10.1023/A:1007536009916

    Article  Google Scholar 

  • Huryn AD, Wallace JB (2000) Life history and production of stream insects. Annu Rev Entomol 45:83–110. doi:10.1080/01650420802331141

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW., Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher-plants, algae and natural phytoplankton. Biochem Physiol Pfl 167:191–194

    Article  CAS  Google Scholar 

  • Jowett IG (1993) A method for objectively identifying pool, run, and riffle habitats from physical measurements. N Z J Mar Freshw 27:241–248. doi:10.1080/00288330.1993.9516563

    Article  Google Scholar 

  • Kawai T, Tanida K (2005) Aquatic insects of Japan [Japanese]: manual with keys and illustration. Tokai University Press, Hadano

    Google Scholar 

  • Kibler K, Tullos D, Kondolf M (2011) Evolving expectations of dam removal outcomes: downstream geomorphic effects following removal of a small, gravel-filled dam. J Am Water Resour As 47:408–423. doi:10.1111/j.1752-1688.2011.00523.x

    Article  Google Scholar 

  • Kondolf GM (1997) Hungry water: effects of dams and gravel mining on river channels. Environ Manag 21:533–551. doi:10.1007/s002679900048

    Article  CAS  Google Scholar 

  • Kottelat M (1996) Oncorhynchus formosanus. The IUCN Red List of Threatened Species 1996: e.T15323A4513507. http://dx.doi.org/10.2305/IUCN.UK.1996.RLTS.T15323A4513507.en

  • Lamouroux N, Doledec S, Gayraud S (2004) Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. J N Am Benthol Soc 23:449–466. doi:10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2

    Article  Google Scholar 

  • Liao LY, Chiu MC, Huang YS, Kuo MH (2012) Size-dependent foraging on aquatic and terrestrial prey by the endangered Taiwan Salmon Oncorhynchus masou formosanus. Zool Stud 51:671–678.

    Google Scholar 

  • Lin HJ, Peng TR, Cheng IC, Chen LW, Kuo MH, Tzeng CS, Tsai ST, Yang JT, Wu S H, Sun YH, Yu SF, Kao SJ (2012) Trophic model of the subtropical headwater stream habitat of Formosan landlocked salmon Oncorhynchus formosanus. Aquat Biol 17:269–283. doi:10.3354/ab00481

    Article  Google Scholar 

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100 doi:10.1016/j.tree.2003.10.002

    Article  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Madej MA (2001) Development of channel organization and roughness following sediment pulses in single-thread, gravel bed rivers. Water Resour Res 37:2259–2272. doi:10.1029/2001WR000229

    Article  Google Scholar 

  • Magilligan F, Nislow KH, Kynard BE, Hackman AM (2016) Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment. Geomorphology 252:158–170. doi:10.1016/j.geomorph.2015.07.027

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297. doi:10.2307/2680104

    Article  Google Scholar 

  • McMullen LE, Lytle DA (2012) Quantifying invertebrate resistance to floods: a global-scale meta-analysis. Ecol Appl 22:2164–2175. doi:10.1890/11-1650.1

    Article  PubMed  Google Scholar 

  • Meffe GK, Minckley WL (1987) Persistence and stability of fish and invertebrate assemblages in a repeatedly disturbed Sonoran Desert stream. Am Midl Nat 117:177–191. doi:10.2307/2425718

    Article  Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America, 4th ed. Kendall Hunt, Dubuque

    Google Scholar 

  • Milliman JD, Syvitski JPM (1992) Geomorphic tectonic control of sediment discharge to the ocean—the importance of small mountainous rivers. J Geol 100:525–544. doi:10.1086/629606

    Article  Google Scholar 

  • Olsen DA, Townsend CR (2005) Flood effects on invertebrates, sediments and particulate organic matter in the hyporheic zone of a gravel-bed stream. Freshw Biol 50:839–853. doi:10.1111/j.1365-2427.2005.01365.x

    Article  Google Scholar 

  • Pizzuto J (2002) Effects of dam removal on river form and process. Bioscience 52:683–691 doi:10.1641/0006-3568(2002)052[0683:EODROR]2.0.CO;2

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47:769–784. doi:10.2307/1313099

    Article  Google Scholar 

  • Quinn JM, Hickey CW (1990) Magnitude of effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in 88 New Zealand rivers. N Z J Mar Fresh 24:411–427. doi:10.1080/00288330.1990.9516433

    Article  Google Scholar 

  • Resh VH, Brown AV, Covich AP, Gurtz ME, Li HW, Minshall GW, Reice SR, Sheldon AL, Wallace JB, Wissmar RC (1988) The role of disturbance in stream ecology. J N Am Benthol Soc 7:433–455. doi:10.2307/1467300

    Article  Google Scholar 

  • Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509–1520. doi:10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2

    Article  Google Scholar 

  • Robinson CT, Aebischer S, Uehlinger U (2004) Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. J N Am Benthol Soc 23:853–867. doi:10.1899/0887-3593(2004)023<0853:IAHROM>2.0.CO;2

    Article  Google Scholar 

  • Sato T, Gwo JC (2011) Demographic and genetic consequences of population subdivision in Formosa land-locked salmon Oncorhynchus masou formosanus, the southernmost subspecies of the salmonids. Ichthyol Res 58: 209–216. doi:10.1007/s10228-011-0209-3

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X, (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds.) Managing the risks of extreme events and disasters to advance climate change adaptation. a special report of working groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 109–230

    Google Scholar 

  • Smith GC, Covich AR, Brasher AMD (2003) An ecological perspective on the biodiversity of tropical island streams. Bioscience 53:1048–1051 doi:10.1641/0006-3568(2003)053[1048:AEPOTB]2.0.CO;2

    Article  Google Scholar 

  • Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208:1717–1730. doi:10.1242/jeb.01556

    Article  PubMed  Google Scholar 

  • Spellman FR, Drinan JE (2001) Stream ecology and self-purification: an introduction, 2nd edn. Technnomics Publishing Company, Inc., Lancaster, Pennsylvania

    Book  Google Scholar 

  • Tonetto AF, Leite RC, Novaes MC, Guillermo-Ferreira R (2015) The relationship between macroalgal morphological complexity and hydraulic conditions in stream habitats. Hydrobiologia 747:33–41. doi:10.1007/s10750-014-2120-1

    Article  Google Scholar 

  • Tonkin JD, Death RG, Joy MK (2009) Invertebrate drift patterns in a regulated river: dams, periphyton biomass or longitudinal patterns? River Res Appl 25:1219–1231. doi:10.1002/rra.1213

    Article  Google Scholar 

  • Tsai JW, Chuang YL, Wu ZY, Kuo MH, Lin HJ (2014) The effects of storm-induced events on the seasonal dynamics of epilithic algal biomass in subtropical mountain streams. Mar Freshw Res 65:25–38. doi:10.1071/MF13058

    Google Scholar 

  • Tullos DD, Finn DS, Walter C (2014) Geomorphic and ecological disturbance and recovery from two small dams and their removal. PLoS ONE 9:e108091 doi:10.1371/journal.pone.0108091

    Article  PubMed  PubMed Central  Google Scholar 

  • Verberk WCEP, Siepel H, Esselink H (2008a) Applying life-history strategies for freshwater macroinvertebrates to lentic waters. Freshw Biol 53:1739–1753. doi:10.1111/j.1365-2427.2008.02036.x

    Article  Google Scholar 

  • Verberk WCEP, Siepel H, Esselink H (2008b) Life-history strategies in freshwater macroinvertebrates. Freshw Biol 53:1722–1738. doi:10.1111/j.1365-2427.2008.02035.x

    Article  Google Scholar 

  • Vinson MR (2001) Long-term dynamics of an invertebrate assemblage downstream from a large dam. Ecol Appl 11:711–730. doi:10.2307/3061112

    Article  Google Scholar 

  • Wang HW, Kuo WC (2015) Geomorphic responses to a large check-dam removal on a mountain river in Taiwan. River Res Appl 32:1094–1105. doi:10.1002/rra.2929

    Article  Google Scholar 

  • Warwick RM (1986) A new method for detecting pollution effects on marine macrobenthic communities. Mar Biol 92:557–562. doi:10.1007/BF00392515

    Article  Google Scholar 

  • Warwick RM, Pearson TH, Ruswahyuni (1987) Detection of pollution effects on marine macrobenthos: further evaluation of the species abundance/biomass method. Mar Biol 95:193–200. doi:10.1007/BF00409005

    Article  Google Scholar 

  • Willett SD, Fisher D, Fuller C, En-Chao Y, Lu CY (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31:945–948. doi:10.1130/G19702.1

    Article  Google Scholar 

  • Woodward G, Bonada N, Feeley HB, Giller PS (2015) Resilience of a stream community to extreme climatic events and long-term recovery from a catastrophic flood. Freshw Biol 60:2497–2510. doi:10.1111/fwb.12592

    Article  Google Scholar 

  • World Commission on Dams (2000) Dams and development: a new framework for decision-making. London Earthscan Publication, UK

    Google Scholar 

  • Yan HY (2000) Threatened fishes of the world: Oncorhynchus masou formosanus (Jordan & Oshima, 1919) (Salmonidae). Environ Biol Fish 57:314–314. doi:10.1023/A:1007687825352

    Article  Google Scholar 

  • Yu SF, Lin HJ (2009) Effects of agriculture on the abundance and community structure of epilithic algae in mountain streams of subtropical Taiwan. Bot Stud 50:73–87

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by Shei-Pa National Park Headquarters, Miaoli County, Taiwan. We thank Prof. Laurie Battle for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-Juh Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HY., Chiu, MC., Chuang, YL. et al. Community responses to dam removal in a subtropical mountainous stream. Aquat Sci 79, 967–983 (2017). https://doi.org/10.1007/s00027-017-0545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-017-0545-0

Keywords

Navigation