Skip to main content
Log in

The relationship between macroalgal morphological complexity and hydraulic conditions in stream habitats

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of habitat complexity have been considered important factors for the evolution of morphological complexity in organisms. We assessed the possible relationship between hydraulic niche conditions and the morphological complexity of algal filaments by sampling four species of macroalgae inhabiting different hydraulic niches in two freshwater streams. These algal species exhibit different fractal dimensions, which were measured by applying a grid method. The results showed that morphological differences are a function of hydraulic niche for stream macroalgae. Algae with complex shape (Nitella wrightii and Batrachosperum puiggarianum) were established in slower flows, while algae with simpler filament shape (Vaucheria sp. and Oedogonium sp.) were more likely to occur in faster water currents. The sites where the species occurred are a reflection of their ability to hold position, which is ultimately driven by their morphology. The influence of flow in stream habitats is an important factor for lotic macroalgae settlement and its effects can be related to evolutionary adjustment of body shape in these environments. We suggest that the morphological structure (here as fractal dimension) of freshwater macroalgae can be considered an adaptation to the costs and benefits exhibited by different hydraulic niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adami, C., 2002. What is complexity? BioEssays 24: 1085–1094.

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters, 2nd ed. Chapman and Hall, New York, NY.

    Book  Google Scholar 

  • Albayrak, I., V. Nikora, O. Miler & M. O’Hare, 2012. Flow-plant interactions at a leaf scale: effects of leaf shape, serration, roughness and flexural rigidity. Aquatic Science 74(2): 267–286.

    Article  Google Scholar 

  • Auerbach, J. E. & J. C. Bongard, 2014. Environmental influence on the evolution of morphological complexity in machines. PLoS Computational Biology 10(1): 1–17.

    Article  Google Scholar 

  • Bicudo, C. E. M. & M. Menezes, 2006. Gêneros de Algas de Águas Continentais do Brasil. RiMa Editora, São Paulo.

    Google Scholar 

  • Borazjani, I. & F. Sotiropoulos, 2010. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. Journal of Experimental Biology 213: 89–107.

    Article  CAS  PubMed  Google Scholar 

  • Branco, L. H. Z. & O. J. Necchi, 1997. Seasonality of macroalgae in three tropical drainage basins in São Paulo State, southeastern Brazil. Archives of Hydrobiologia 141(1): 75–91.

    Google Scholar 

  • Branco, C. C. Z., R. A. Krupek & C. K. Peres, 2008. Seasonality of macroalgal communities in a subtropical drainage basin in Paraná state, southern Brazil. Brazilian Journal of Biology 68(4): 741–749.

    Article  CAS  Google Scholar 

  • Branco, C. C. Z., R. A. Krupek & C. K. Peres, 2009. Distribution of stream macroalgal communities from the mid-western region of Parana´ State, southern Brazil: importance of local-scale variation. Brazilian Archives of Biology and Technology 52: 379–386.

    Article  Google Scholar 

  • Brooks, A. J., T. Haeusler, I. Reinfelds & S. Williams, 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50: 331–344.

    Article  Google Scholar 

  • Carpenter, R. C., J. M. Hackney & W. H. Adey, 1991. Measurements of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow. Limnology and Oceanograph 36: 40–49.

  • Chow, V. T., 1959. Open-Channel Hydraulics. McGraw Hill, New York: 680 pp.

    Google Scholar 

  • Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology: An Introduction for Ecologists, 2nd ed. Wiley, West Sussex.

    Google Scholar 

  • Hein, M., M. F. Pedersen & K. Sand-Jensen, 1995. Size-dependent nitrogen uptake in micro-and macroalgae. Marine Ecology Progress Series 118(1): 247–253.

    Article  Google Scholar 

  • Janauer, G. A., U. Schmidt-Mumm & B. Schmidt, 2010. Aquatic macrophytes and current velocity in the Danube River. Ecological Engineering 36: 1138–1145.

    Article  Google Scholar 

  • Janauer G. A., U. Schmidt-Mumm & W. Reckendorfer, 2013. Ecohydraulics and aquatic macrophytes: assessing the relationship in river floodplains. In Maddock, I., A. Harby, P. Kemp & P. Wood (eds) Ecohydraulics: An Integrated Approach, Wiley-Blackwell, Oxford, UK, 245–259.

  • Klingenberg, C. P., 2010. Evolution and development of shape: integrating quantitative approaches. Nature reviews 11: 623–635.

  • Kostylev, V. E., J. Erlandsson, M. Y. Ming & G. A. Williams, 2005. The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecological Complexity 2(3): 272–286.

    Article  Google Scholar 

  • Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.

    Article  Google Scholar 

  • Krupek, R. A. & C. C. Z. Branco, 2012. Ecological distribution of stream macroalgae in different spatial scales using taxonomic and morphological groups. Brazilian Journal of Botany 35(3): 273–280.

    Article  Google Scholar 

  • Lee, R. E., 2008. Phycology, 4th ed. Cambridge University Press, New York: 547 pp.

    Book  Google Scholar 

  • Littler, M. M., D. S. Littler & P. R. Taylor, 1983. Evolutionary strategies in a tropical barrier reef system: functional form groups of marine macroalgae. Journal of Phycology 19: 229–237.

    Article  Google Scholar 

  • Lovvorn, J. R., G. A. Liggins, M. H. Borstad, S. M. Calisal & J. Mikkelsen, 2001. Hydrodynamic drag of diving birds: effects of body size, body shape and feathers at steady speeds. The Journal of Experimental Biology 204: 1547–1557.

    CAS  PubMed  Google Scholar 

  • McAbendroth, L., P. M. Ramsay, A. Foggo, S. K. Rundle & D. T. Bilton, 2005. Does macrophytes fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 11: 279–290.

    Article  Google Scholar 

  • Necchi, O. J. & D. Pascoaloto, 1993. Distribution and seasonal dynamics of Rhodophyta in the Preto River basin, southeastern Brazil. Hydrobiologia 250(2): 81–90.

    Article  CAS  Google Scholar 

  • Necchi, O., 1997. Microhabitat and plant structure of Batrachospermum (Batrachospermales, Rhodophyta) populations in four streams of São Paulo State, southeastern Brazil. Phycological Research 45(1): 39–45.

    Article  Google Scholar 

  • Nicotra, A. B., A. Leigh, C. K. Boyce, C. S. Jones, K. J. Niklas, D. L. Royer & H. Tsukaya, 2011. The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology 38(7): 535–552.

  • Nikora, V., 2010. Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Research and Application 26: 367–384.

    Article  Google Scholar 

  • Orr, H. A., 2000. Adaptation and the cost of complexity. Evolution: International Journal of Organic. Evolution 54: 13–20.

    Article  CAS  Google Scholar 

  • Passy, S., 2002. Environmental randomness underlies morphological complexity of colonial diatoms. Functional Ecology 16: 690–695.

    Article  Google Scholar 

  • Pennycuick, C. J., M. Klaassen, A. Kvist & A. Lindstrom, 1996. Wingbeat frequency and the body drag anomaly: windtunnel observations on a thrush nightingale (Luscinia luscinia) and a teal (Anas crecca). Journal of Experimental Biology 199: 2757–2765.

    PubMed  Google Scholar 

  • Peterson, C. G. & R. J. Stevenson, 1992. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73: 1445–1461.

    Article  Google Scholar 

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.

    Article  Google Scholar 

  • Schagerl, M. & M. Kerschbaumer, 2009. Autecology and morphology of selected Vaucheria species (Xanthophyceae). Aquatic Ecology 43(2): 295–303.

    Article  CAS  Google Scholar 

  • Schneck, F. & A. S. Melo, 2012. Hydrological disturbance overrides the effect of substratum roughness on the resistance and resilience of stream benthic algae. Freshwater Biology 57: 1678–1688.

    Article  Google Scholar 

  • Sheath, R. G. & K. M. Cole, 1992. Biogeography of stream macroalgal in North America. Journal of Phycology 28: 448–460.

    Article  Google Scholar 

  • Statzner, B. & B. Higler, 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology 16: 127–139.

    Article  Google Scholar 

  • Steveson, R. J., M. L. Bothwell & R. L. Lowe, 1996. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 753 pp.

    Google Scholar 

  • Taniguchi, H. & M. Tokeshi, 2004. Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology 49: 1164–1178.

    Article  Google Scholar 

  • Tarakhovskaya, E. R., 2014. Mechanisms of bioadhesion of macrophytic algae. Russian Journal of Plant Physiology 61(1): 19–25.

    Article  CAS  Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater biology 31(3): 265–275.

    Article  Google Scholar 

  • Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.

    Google Scholar 

  • Tonetto, A. F., C. K. Peres & C. C. Z. Branco, 2012. O gênero Vaucheria DC (Vaucheriaceae, Xanthophyceae) no Sul do Brasil: aspectos taxonômicos e ecológicos. Biota Neotropica 12(2): 197–204.

    Article  Google Scholar 

  • Tonetto, A. F., R. Cardoso-Leite, C. K. Peres, P. C. Bispo & C. C. Z. Branco, 2014. The effects of habitat complexity and hydraulic conditions on the establishment of benthic stream macroalgae. Freshwater Biology 59(8): 1687–1694.

    Article  Google Scholar 

  • Vreeland, V., J. H. Waite & L. Epstein, 1998. Polyphenols and oxidases in substratum adhesion by marine algae and mussels. Journal of Phycology 34: 1–8.

    Article  CAS  Google Scholar 

  • Vieira, J. J. & O. J. NECCHI, 2002. Microhabitat and plant structure of Characeae (Chlorophyta) populations in streams from São Paulo State, southeastern Brazil. Cryptogamie Algologie 23(1): 51–63.

    Article  Google Scholar 

  • Wainwright, P. C. & S. M. Reilly, 1994. Ecological Morphology: Integrative Organismal Biology. The University of Chicago Press, Chicago: 367 pp.

    Google Scholar 

  • Webb, P. W. & A. J. Cotel, 2010. Turbulence: does vorticity affect the structure and shape of body and fin propulsors? Integrative and Comparative Biology 50(6): 1155–1166.

    Article  CAS  PubMed  Google Scholar 

  • Wehr, J. D., 2002. Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego.

    Google Scholar 

  • Willby, N. J., V. J. Abernethy & B. O. L. Demars, 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biology 43: 43–74.

    Article  Google Scholar 

Download references

Acknowledgements

We kindly thank Katya Kovalenko for editing this manuscript and for valuable comments. Furthermore, we greatly thank for anonymous reviewers who improved the manuscript with important suggestions. We thank CAPES, CNPq and FAPESP (process 13/00406-7; process 2010/17563-0) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélio Fajar Tonetto.

Additional information

Handling editor: Katya E. Kovalenko

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonetto, A.F., Cardoso-Leite, R., Novaes, M.C. et al. The relationship between macroalgal morphological complexity and hydraulic conditions in stream habitats. Hydrobiologia 747, 33–41 (2015). https://doi.org/10.1007/s10750-014-2120-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2120-1

Keywords

Navigation