Skip to main content
Log in

Sediment resuspension effects on dissolved organic carbon fluxes and microbial metabolic potentials in reservoirs

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Sediment resuspension can affect water quality in lakes and reservoirs. We investigated the effect of sediment resuspension on benthic fluxes of dissolved organic carbon (DOC), metals (Fe, Mn), and nutrients (N, P) in three drinking water reservoirs using sediment core incubations. Measurement of Fe and Mn fluxes, and of microbial potentials to degrade organic substrates (Biolog EcoPlates™) were employed to understand mechanisms regulating DOC exchange after sediment resuspension. Single sediment resuspension events resulted in DOC fluxes [−104 (into sediment) to 46 (release) mmol m−2 event−1] equal to 9–17 days of diffusive fluxes, making them a relevant process. Shallow reservoir sites were more likely to immobilize DOC after resuspension than deep sites. Sediment resuspension under anoxia always led to increases of DOC and metals in the overlying water. Resuspension did not necessarily mobilize nitrate or phosphorus even under anoxia, while ammonium was released after resuspension. Sediment resuspension increased hypolimnetic microbial potentials to utilize organic substrates in both spring and summer. However microbial cells counts and biomass either remained constant or decreased in summer. Adsorption to Fe minerals seemed to play a role in DOC immobilization as evidenced by a decrease in DOC:Fe molar ratios after resuspension in Fe limited sites and constant ratios in Fe rich sites. The results demonstrate a potential for DOC immobilization mainly by Fe minerals and to some extent by benthic microbes. Therefore, sediment resuspension can be beneficial for water quality in low nutrient, iron rich systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersson S, Valeur I, Nilsson I (1994) Influence of lime on soil respiration, leaching of DOC, and C/S relationships in the mor humus of a haplic podsol. Environ Int 20:81–88. doi:10.1016/0160-4120(94)90070-1

    Article  CAS  Google Scholar 

  • Andersson S, Nilsson SI, Saetre P (2000) Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biol Biochem 32:1–10. doi:10.1016/S0038-0717(99)00103-0

    Article  CAS  Google Scholar 

  • Björnsen Beratende Ingenieure GmbH (2012) Fortschreibung der Potentialstudie für das Bodesystem Bestandsaufnahme (Updating the potential study for Bode System inventory). In German. Talsperrenbetrieb Sachsen-Anhalt: Anstalt des öffentlichen Rechts, Blankenburg, Koblenz

  • Bloesch J (1995) Mechanisms, measurement and importance of sediment resuspension in lakes. Mar Freshwater Res 46:295–304. doi:10.1071/MF9950295

    Google Scholar 

  • Carroll T, King S, Gray SR, Bolto BA, Booker NA (2000) The fouling of microfiltration membranes by NOM after coagulation treatment. Water Res 34:2861–2868. doi:10.1016/S0043-1354(00)00051-8

    Article  CAS  Google Scholar 

  • Chen C, Dynes JJ, Wang J, Sparks DL (2014) Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ Sci Technol 48:13751–13759. doi:10.1021/es503669u

    Article  CAS  PubMed  Google Scholar 

  • Christian BW, Lind OT (2007) Multiple carbon substrate utilization by bacteria at the sediment-water interface: seasonal patterns in a stratified eutrophic reservoir. Hydrobiologia 586:43–56. doi:10.1007/s10750-006-0476-6

    Article  CAS  Google Scholar 

  • Dadi T, Völkner C, Koschorreck M (2015) A sediment core incubation method to measure the flux of dissolved organic carbon between sediment and water. J Soil Sediment 15:2350–2358. doi:10.1007/s11368-015-1213-4

    Article  CAS  Google Scholar 

  • Dadi T, Friese K, Wendt-Potthoff K, Koschorreck M (2016) Benthic dissolved organic carbon fluxes in a drinking water reservoir. Limnol Oceanogr 61:445–459. doi:10.1002/lno.10224

    Article  CAS  Google Scholar 

  • de Vicente I, Cruz-Pizarro L, Rueda FJ (2010) Sediment resuspension in two adjacent shallow coastal lakes: controlling factors and consequences on phosphate dynamics. Aquat Sci 72:21–31. doi:10.1007/s00027-009-0107-1

    Article  CAS  Google Scholar 

  • Ducey TF, Vanotti MB, Shriner AD, Szogi AA, Ellison AQ (2010) Characterization of a microbial community capable of nitrification at cold temperature. Bioresour Technol 101:491–500. doi:10.1016/j.biortech.2009.07.091

    Article  CAS  PubMed  Google Scholar 

  • Edzwald JK, Tobiason JE (1999) Enhanced coagulation: US requirements and a broader view. Water Sci Technol 40:63–70. doi:10.1016/s0273-1223(99)00641-1

    Article  CAS  Google Scholar 

  • Eikebrokk B, Vogt RD, Liltved H (2004) NOM increase in Northern European source waters: discussion of possible causes and impacts on coagulation/contact filtration processes. Water Sci Technol 4:47–54

    Google Scholar 

  • Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ Pollut 137:55–71. doi:10.1016/j.envpol.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  • Evans CD et al (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biol 18:3317–3331. doi:10.1111/j.1365-2486.2012.02794.x

    Article  Google Scholar 

  • Fischer J, Krogman R, Quist M (2013) Influences of native and non-native benthivorous fishes on aquatic ecosystem degradation. Hydrobiologia 711:187–199. doi:10.1007/s10750-013-1483-z

    Article  CAS  Google Scholar 

  • Friese K, Schultze M, Boehrer B, Buettner O, Herzsprung P, Koschorreck M, Kuehn B, Roenicke H, Tittel J, Wendt-Potthoff K et al (2014) Ecological response of two hydro-morphological similar pre-dams to contrasting land-use in the Rappbode reservoir system (Germany). Int Rev Hydrobiol 99(5):335–349. doi:10.1002/iroh.201301672

    Article  CAS  Google Scholar 

  • Garstecki T, Wickham SA, Arndt H (2002) Effects of experimental sediment resuspension on a coastal planktonic microbial food web. Estuar Coast Shelf S 55:751–762. doi:10.1006/ecss.2001.0937

    Article  Google Scholar 

  • Gibson B, Ptacek C, Blowes D, Daugherty S (2015) Sediment resuspension under variable geochemical conditions and implications for contaminant release. J Soil Sediment 15:1644–1656. doi:10.1007/s11368-015-1106-6

    Article  CAS  Google Scholar 

  • Goetz D, Kröger R, Miranda LE (2014) Effects of Smallmouth Buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds. Bull Environ Contam Toxicol 92:503–508. doi:10.1007/s00128-014-1231-8

    Article  CAS  PubMed  Google Scholar 

  • Gough R, Holliman PJ, Heard TR, Freeman C (2014) Dissolved organic carbon and trihalomethane formation potential removal during coagulation of a typical UK upland water with alum, PAX-18 and PIX-322. J Water Supply Res T 63:650–660. doi:10.2166/aqua.2014.007

    Article  Google Scholar 

  • Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol 28:38–46. doi:10.1021/es00050a007

    Article  CAS  PubMed  Google Scholar 

  • Guggenberger G, Kaiser K, Zech W (1998) Mobilization and immobilization of dissolved organic matter in forest soils. Z Pflanz Bodenkunde 161:401–408. doi:10.1002/jpln.1998.3581610408

    Article  CAS  Google Scholar 

  • Guizien K, Dupuy C, Ory P, Montanie H, Hartmann H, Chatelain M, Karpytchev M (2014) Microorganism dynamics during a rising tide: disentangling effects of resuspension and mixing with offshore waters above an intertidal mudflat. J Marine Syst 129:178–188. doi:10.1016/j.jmarsys.2013.05.010

    Article  Google Scholar 

  • Holmroos H, Hietanen S, Niemisto J, Horppila J (2012) Sediment resuspension and denitrification affect the nitrogen to phosphorus ratio of shallow lake waters. Fund Appl Limnol 180:193–205. doi:10.1127/1863-9135/2012/0223

    Article  CAS  Google Scholar 

  • Jiang D, Huang Q, Cai P, Rong X, Chen W (2007) Adsorption of Pseudomonas putida on clay minerals and iron oxide. Colloid Surface B 54:217–221. doi:10.1016/j.colsurfb.2006.10.030

    Article  CAS  Google Scholar 

  • Jones TG, Evans CD, Jones DL, Hill PW, Freeman C (2015) Transformations in DOC along a source to sea continuum; impacts of photo-degradation, biological processes and mixing. Aquat Sci. doi:10.1007/s00027-015-0461-0

    Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304. doi:10.1097/00010694-200004000-00001

    Article  CAS  Google Scholar 

  • Kerr JG, Eimers MC (2012) Decreasing soil water Ca2+ reduces DOC adsorption in mineral soils: Implications for long-term DOC trends in an upland forested catchment in southern Ontario, Canada. Sci Total Environ 427–428:298–307. doi:10.1016/j.scitotenv.2012.04.016

    Article  PubMed  Google Scholar 

  • Koschinsky A, Gaye-Haake B, Arndt C, Maue G, Spitzy A, Winkler A, Halbach P (2001) Experiments on the influence of sediment disturbances on the biogeochemistry of the deep-sea environment. Deep Sea Res Part II 48:3629–3651. doi:10.1016/S0967-0645(01)00060-1

    Article  CAS  Google Scholar 

  • Laskov C, Herzog C, Lewandowski J, Hupfer M (2007) Miniaturized photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron, and sulfate in porewater of freshwater sediments. Limnol Oceanogr Meth 5:63–71. doi:10.4319/lom.2007.5.63

    Article  CAS  Google Scholar 

  • Liang Y, Liu X, Xiao H, Gao X, Li W, Xiong J (2016) Impact of high water level fluctuations on stable isotopic signature of POM and source identification in a floodplain lake-Bang Lake (Poyang Lake). Environ Earth Sci 75:1–12. doi:10.1007/s12665-015-4847-z

    Article  CAS  Google Scholar 

  • Liikanen A, Martikainen PJ (2003) Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment–water interface in a eutrophic lake. Chemosphere 52:1287–1293. doi:10.1016/S0045-6535(03)00224-8

    Article  CAS  PubMed  Google Scholar 

  • Lovstedt CB, Bengtsson L (2008) The role of non-prevailing wind direction on resuspension and redistribution of sediments in a shallow lake. Aquat Sci 70:304–313. doi:10.1007/s00027-008-8047-8

    Article  Google Scholar 

  • May KR (1965) A new graticule for particle counting and sizing. J Sci Instrum 42:500–501. doi:10.1088/0950-7671/42/7/416

    Article  Google Scholar 

  • Mayer LM (1994) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim Cosmochim Acta 58:1271–1284. doi:10.1016/0016-7037(94)90381-6

    Article  CAS  Google Scholar 

  • Mc Dowell WM (1985) Kinetics and mechanisms of dissolved organic carbon retention in a headwater stream. Biogeochemistry 1:329–352. doi:10.1007/BF02187376

    Article  CAS  Google Scholar 

  • Meijer ML et al (1994) Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275–276:457–466. doi:10.1007/BF00026734

    Article  Google Scholar 

  • Morgan B, Rate AW, Burton ED (2012) Water chemistry and nutrient release during the resuspension of FeS-rich sediments in a eutrophic estuarine system. Sci Total Environ 432:47–56. doi:10.1016/j.scitotenv.2012.05.065

    Article  CAS  PubMed  Google Scholar 

  • Müller S, Mitrovic S, Baldwin D (2015) Oxygen and dissolved organic carbon control release of N, P and Fe from the sediments of a shallow, polymictic lake. J Soil Sediment. doi:10.1007/s11368-015-1298-9

    Google Scholar 

  • Münster U, Einiö P, Nurminen J, Overbeck J (1992) Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. Hydrobiologia 229:225–238. doi:10.1007/BF00007002

    Article  Google Scholar 

  • Niemistö J, Holmroos H, Pekcan-Hekim Z, Horppila J (2008) Interactions between sediment resuspension and sediment quality decrease the TN:TP ratio in a shallow lake. Limnol Oceanogr 53:2407–2415. doi:10.4319/lo.2008.53.6.2407

    Article  Google Scholar 

  • Nowlin WH, Evarts JL, Vanni MJ (2005) Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshw Biol 50:301–322

    Article  CAS  Google Scholar 

  • Paul L (2003) Nutrient elimination in pre-dams: results of long term studies. Hydrobiologia 504:289–295. doi:10.1023/B:HYDR.0000008528.34920.b2

    Article  CAS  Google Scholar 

  • Peter S, Isidorova A, Sobek S (2016) Enhanced carbon loss from anoxic lake sediment through diffusion of dissolved organic carbon. J Geophys Res Biogeosci 121:1959–1977. doi:10.1002/2016JG003425.

    Article  CAS  Google Scholar 

  • Pütz K, Benndorf J (1998) The importance of pre-reservoirs for the control of eutrophication of reservoirs. Water Sci Technol 37:317–324. doi:10.1016/S0273-1223(98)00039-0

    Article  Google Scholar 

  • Reddy KR, Fisher MM, Ivanoff D (1996) Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. J Environ Qual 25:363–371. doi:10.2134/jeq1996.00472425002500020022x

    Article  CAS  Google Scholar 

  • Ritzrau W, Graf G (1992) Increase of microbial biomass in the benthic turbidity zone of Kiel Bight after resuspension by a storm event. Limnol Oceanogr 37:1081–1086. doi:10.4319/lo.1992.37.5.1081

    Article  Google Scholar 

  • Roberts J, Chick A, Oswald L, Thompson P (1995) Effect of carp, Cyprinus carpio L, an exotic benthivorous fish, on aquatic plants and water quality in experimental ponds. Mar Freshw Res 46:1171–1180. doi:10.1071/mf9951171

    Article  CAS  Google Scholar 

  • Rožić M, Cerjan-Stefanović Š, Kurajica S, Vančina V, Hodžić E (2000) Ammoniacal nitrogen removal from water by treatment with clays and zeolites. Water Res 34:3675–3681. doi:10.1016/S0043-1354(00)00113-5

    Article  Google Scholar 

  • Saad OALO, Conrad R (1993) Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biol Fert Soils 15:21–27. doi:10.1007/bf00336283

    Article  CAS  Google Scholar 

  • Scheffer M, Portielje R, Zambrano L (2003) Fish facilitate wave resuspension of sediment. Limnol Oceanogr 48:1920–1926. doi:10.4319/lo.2003.48.5.1920

    Article  Google Scholar 

  • Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213. doi:10.3354/meps051201

    Article  CAS  Google Scholar 

  • Skoog AC, Arias-Esquivel VA (2009) The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese. Sci Total Environ 407:6085–6092. doi:10.1016/j.scitotenv.2009.08.030

    Article  CAS  PubMed  Google Scholar 

  • Søndergaard M, Jeppesen E, Mortensen E, Dall E, Kristensen P, Sortkjær O (1990) Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200–201:229–240. doi:10.1007/BF02530342

    Article  Google Scholar 

  • Søndergaard M, Kristensen P, Jeppesen E (1992) Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark. Hydrobiologia 228:91–99. doi:10.1007/BF00006480

    Article  Google Scholar 

  • Søndergaard M, Liboriussen L, Pedersen A, Jeppesen E (2008) Lake restoration by fish removal: short- and long-term effects in 36 Danish lakes. Ecosystems 11:1291–1305. doi:10.1007/s10021-008-9193-5

    Article  Google Scholar 

  • Stumm W, Morgen JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd edn. Wiley, New York

    Google Scholar 

  • Tammeorg O, Niemisto J, Mols T, Laugaste R, Panksep K, Kangur K (2013) Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquat Sci 75:559–570. doi:10.1007/s00027-013-0300-0

    Article  Google Scholar 

  • Tengberg A, Almroth E, Hall P (2003) Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology. J Exp Mar Biol Ecol 285–286:119–142. doi:10.1016/S0022-0981(02)00523-3

    Article  Google Scholar 

  • Tipping E (1981) The adsorption of aquatic humic substances by iron oxides. Geochim Cosmochim Acta 45:191–199. doi:10.1016/0016-7037(81)90162-9

    Article  CAS  Google Scholar 

  • Wainright SC (1990) Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web. Mar Ecol Prog Ser 62:271–281. doi:10.3354/meps062271

    Article  Google Scholar 

  • Wendt-Potthoff K, Kloß C, Schultze M, Koschorreck M (2014) Anaerobic metabolism of two hydro-morphological similar pre-dams under contrasting nutrient loading (Rappbode Reservoir System, Germany). Int Rev Hydrobiol 99:350–362. doi:10.1002/iroh.201301673

    Article  CAS  Google Scholar 

  • Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, Röske I (2003) Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol Ecol 46:331–347. doi:10.1016/S0168-6496(03)00249-6

    Article  CAS  PubMed  Google Scholar 

  • Ziervogel K et al (2016) Enhanced particle fluxes and heterotrophic bacterial activities in Gulf of Mexico bottom waters following storm-induced sediment resuspension. Deep Sea Res Pt II: Topical Studies in Oceanography 129:77–88. doi:10.1016/j.dsr2.2015.06.017

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the TALKO project (BMBF 02WT1290A). We thank Corinna Völkner for assisting with field sampling and cell counts, Juliane Schmidt for assistance in the laboratory, and the UFZ GEWANA for sample analysis. We acknowledge the stimulating reviews of Jürg Bloesch and an anonymous reviewer which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tallent Dadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadi, T., Wendt-Potthoff, K. & Koschorreck, M. Sediment resuspension effects on dissolved organic carbon fluxes and microbial metabolic potentials in reservoirs. Aquat Sci 79, 749–764 (2017). https://doi.org/10.1007/s00027-017-0533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-017-0533-4

Keywords

Navigation