Skip to main content
Log in

Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing

  • Part Four: Whole Lake Studies
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

No recovery was recorded in the shallow and eutrophic Lake Væng, Denmark, after a sewage diversion in 1981, due to an internal phosphorus loading and a dominance of planktivorous fish. In order to improve lake water quality by means of biomanipulation, a total of 2.5 tons of bream (Abramis brama) and roach (Rutilus rutilus) was removed during 1986 and the spring of 1987. The planktivorous/benthivorous fish biomass was thereby reduced by approximately 50%, from 30 to 15 g WW m−2. After the reduction, the biological structure of the lake changed markedly. The zooplankton community changed from a dominance of rotifers before the fish reduction to larger cladocerans afterwards. Zooplankton mean summer biomass increased from 0.4 mg DW l−1 in 1986 to 2.7 mg DW l−1 in 1987 and to 1.3 mg DW l−1 in 1988. Phytoplankton biomass decreased from a mean summer level of 25 mm3 l−1 in 1986 to 12 in 1987 and to 7 mm3 l−1 in 1988. Qualitatively, the phytoplankton changed from a dominance of cyanobacteria and small diatoms to a dominance of larger diatoms, larger greens and cryptophytes. Secchi depth increased from a mean summer level of 0.6 m in 1986 to 1.0 m in 1987 and 1.3 m in 1988. After the fish removal, the internal phosphorus loading was reduced markedly. This reduction is considered primarily to be caused by the improved redox conditions in the sediment due to reduced sedimentation, and by the increased micro-benthic primary production and phosphorus uptake. Submerged macrophytes, mainlyPotamogeton crispus andElodea canadensis, increased in abundance due to improved light climate at the lake bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, J. M., 1975. Influence of pH on release of phosphorus from lake sediments. Arch. Hydrobiol. 76, 4: 411–419.

    CAS  Google Scholar 

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  • Andersson, G. W., Granéli & J. Stenson, 1988. The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia 170: 267–284.

    CAS  Google Scholar 

  • Benndorf, J., 1987. Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz Z. Hydrol. 49, 2: 237–247.

    CAS  Google Scholar 

  • Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  • Braband, Å., B. Faafeng & J. P. M. Nilssen, in press. Phosphorus supply to phytoplankton production — fish excretion versus external loading. Can. J. Fish. aquat. Sci.

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  Google Scholar 

  • Culver, D. A., M. M. Bourcherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of freshwater Crustacean zooplankton from length-weight regressions. Can. J. Fish. aquat. Sci. 42: 1380–1390.

    Google Scholar 

  • Dahl, I., 1974. Intercalibrations of methods for chemical analyses of water. V. Results from intercalibrations of methods for determining nitrate and total nitrogen. Vatten 30: 180–186.

    CAS  Google Scholar 

  • Dumont, H. J., I. Van De Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from plankton, periphyton and benthos of continental waters. Oecologia (Berl.) 19: 75–97.

    Article  Google Scholar 

  • Fott, J., L. Pechar & M. Prazakova, 1980. Fish as a factor controlling water quality in ponds. In J. Barica & L.R. Mur (eds.), Hypertrophic Ecosystems, Developments in Hydrobiology 2: 255–261.

  • Grimm, M. P., 1989. Northern Pike (Esox lucius L.) and aquatic vegetation, tools in the management of fisheries and water quality in shallow waters. Hydrobiol. Bull. 23: 59–65.

    Article  Google Scholar 

  • Gulati, R. D. & E. Van Donk, 1989. Biomanipulation in the Netherlands: applications in fresh-water ecosystems and estuarine waters — an introduction. Hydrobiol. Bull. 23: 1–4.

    Article  Google Scholar 

  • Hansson, L.-S., 1989. The influence of a periphytic biolayer on phosphorus exchange between substrate and water. Arch. Hydrobiol. 115: 21–26.

    CAS  Google Scholar 

  • Henrikson, L., H. G. Nyman, H. G. Oscarson & J. A. E. Stenson, 1980. Trophic changes without changes in the external nutrient loading. Hydrobiologia 68: 257–263.

    Article  CAS  Google Scholar 

  • Holm-Hansen, D. & B. Riemann, 1978. Chlorophyll a determination: Improvements in methods. Oikos 30: 438–447.

    Article  CAS  Google Scholar 

  • Hrbácek, J., B. Desortova & J. Popovsky, 1978. Influence of the fishstock on the phosphorus-chlorophyll ratio. Verh. int. Ver. Limnol. 20: 1624–1628.

    Google Scholar 

  • Jagtman, E., S. H. Hosper, M.-L. Meijer & E. van Donk, 1988. The role of fish-stock management in eutrophication control in shallow lakes in the Netherlands. Contribution to the EIFAC Symposium on Management Schemes for Inland Fisheries, Gotenborg, 31 May–3 June 1988.

  • Jansson, M., 1980. Role of benthic algae in transport of nitrogen from sediment to lake water in a shallow clearwater lake. Arch. Hydrobiol. 89: 101–109.

    CAS  Google Scholar 

  • Jensen, H. S. & F. Ø. Andersen, in press. The effect of nitrate on the internal phosphorus loading in two shallow, eutrophic lakes. Verh. int. Ver. Limnol. 24.

  • Jeppesen, E., M. Søndergaard, H. J. Jensen & J. P. Müller, 1989a. Restoration of lakes by changing the fish structure. Results from ongoing investigations. Part 1: Main report (Restaurering af søer ved indgreb i fiskebestanden. Status for igangværende undersøgelser. Del 1: Hovedrapport). National Environmental Research Institute, Silkeborg, Denmark: 73 pp. (in Danish).

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & A.-M. Hansen, 1989b. Bundplanters betydning for miljøkvaliteten i søer (in Danish). Vand & Miljø 1989, 8: 345–349.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjær, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990a. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: Cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990b. Fish manipulation as a lake restoration tool in shallow, eutropic temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, O. Sortkjær, E. Mortensen & P. Kristensen, 1990c. Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study on phytoplankton collapses in Lake Søbygård, Denmark. Hydrobiologia 191: 149–164.

    Article  Google Scholar 

  • Koroleff, F., 1970. Determiantion of total phosphorus in natural water by means of persulphate oxidation. An. Interlab. Report No. 3, Cons. Int. pour l'Explor de la Mer.

  • Lehman, J. T. & T. Naumoski, 1985. Content and turnover rates of phosphorus in Daphnia pulex: Effect of food quality. Hydrobiologia 128: 119–125.

    Article  CAS  Google Scholar 

  • Meijer, M.-L., A. J. P. Raat & R. W. Doef, 1989. Restoration by biomanipulation of Lake Bleiswijkse Zoom (The Netherlands): first results. Hydrobiol. Bull. 23: 49–57.

    Article  CAS  Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1972. A modified single solution method for the determination of phosphate in natural waters. Analyt. chim. Acta. 27: 21–26.

    Google Scholar 

  • Post, J. R. & D. J. McQueen, 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwat. Biol. 17: 79–89.

    Article  Google Scholar 

  • Reinertsen, H. & U. Olsen, 1984. Effects of fish elimination on the phytoplankton community of a eutrophic lake. Verh. int. Ver. Limnol. 22: 649–657.

    Google Scholar 

  • Riemann, B., K. Christoffersen, H. J. Jensen, J. P. Müller, C. L. Lindegaard & S. Bosselmann, 1990. Ecological consequences of a manual reduction of roach and bream in a eutrophic, temperate lake. Hydrobiologia 200/201: 241–250.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71–76.

    Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations. Academia Verlag: 497 pp.

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Article  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.

    CAS  Google Scholar 

  • Solorzano, L. & J. H. Sharp, 1980. Determination of total dissolved nitrogen in natural waters. Limnol. Oceanogr. 25: 751–754.

    Article  CAS  Google Scholar 

  • Stenson, J. A. E., T. Bohlin, L. Henrikson, B. I. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effects on fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.

    Google Scholar 

  • Søndergaard, M., 1988. Seasonal variations in the loosely sorbed phosphorus fraction of the sediment of a shallow and hypertrophic lake. Envir. Geol. Wat. Sci. 11: 115–121.

    Google Scholar 

  • Søndergaard, M., 1989. Phosphorus release from a hypertrophic lake sediment: Experiments with undisturbed sediment cores in an continuous flow system. Arch. Hydrobiol. 116, 1: 45–59.

    Google Scholar 

  • Tatrai, I., G. T. Laszlo & J. E. Ponyi, 1985. Effects of bream (Albramis brama L.) on the lower trophic level and on the water quality in Lake Balaton. Arch. Hydrobiol. 105, 2: 205–217.

    Google Scholar 

  • Wright, D. I. & J. Shapiro, 1984. Nutrient reduction by biomanipulation: An unexpected phenomenon and its possible cause. Verh. int. Ver. Limnol. 22: 518–524.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Søndergaard, M., Jeppesen, E., Mortensen, E. et al. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200, 229–240 (1990). https://doi.org/10.1007/BF02530342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530342

Key words

Navigation