Skip to main content

Advertisement

Log in

Changes in Mediterranean high mountain Trichoptera communities after a 20-year period

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Rivers in Mediterranean high mountains are especially vulnerable to climate change because these areas are characterized by extreme climatic conditions of snowy winters and relatively frequent summer droughts. Climate induced alterations in temperature and the magnitude of high and low river flows are expected to have significant effects on aquatic fauna. Here, we analysed changes in the caddisfly communities of the Sierra Nevada during a 20-year period on an altitudinal gradient range of 952–3050 m. Furthermore, we related these changes to an observed increase in air temperature and decrease in river flow over the last 40 years. Overall, caddisfly species richness increased but patterns varied depending on altitude in a non-linear shape. Richness increased in altitude with maximum values at sites of intermediate-high altitude (1800–2000 m). The effects of the observed climate change may be explained by the colonization of headwaters and middle reaches from mid-lowland species or by those from streams and rivers in nearby mountain chains at lower altitude. The observed richness increase and its association with environmental conditions suggest that mountains with a considerable altitudinal gradient may function as refuges for species and populations during periods of climatic change, which strength the importance of the conservation of mountainous habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnell R, Bates B, Land H, Magnusson JJ, Mulholland P (1996) Hydrology and freshwater ecology. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Climate Change 1995: Impacts, Adaptations, and Mitigation. Scientific-Technical, Cambridge University Press, Cambridge, pp 325–364

    Google Scholar 

  • Bálint M, Domisch S, Engelhardt CH, Haase P, Lehrian S, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Change 1:313–318

    Article  Google Scholar 

  • Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, New York

    Google Scholar 

  • Blondel J, Aronson J, Bodiou JY, Boeuf G (2010) The Mediterranean region: biological diversity in space and time. Oxford University Press, New York

    Google Scholar 

  • Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719:1–29

    Article  Google Scholar 

  • Bonada N, Zamora-Muñoz C, El Alami M, Múrria C, Prat N (2008) New record of Trichoptera in reference Mediterranean-climate rivers of the Iberian Peninsula and North of Africa: Taxonomical. Faunistical and Ecological aspects. Graellsia 64(2):189–208

    Article  Google Scholar 

  • Bradley C, Ormerod SJ (2001) Community persistence among stream invertebrates the North tracks Atlantic Oscillation. J Anim Ecol 70:987–996

    Article  Google Scholar 

  • Camargo JA, García de Jalón D (1988) Principales características morfológicas de los géneros ibéricos de la familia Limnephilidae (Trichoptera), en sus últimos estadios larvarios. Bol Asoc Esp Entomol 12:239–258

    Google Scholar 

  • Castillo-Martín A (2000) Parque Nacional de Sierra Nevada. Clima e Hidrología. In: Canseco (ed) Parque Nacional de Sierra Nevada

  • Colwell R (1997) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User´s Guide), Version 5.01

  • Colwell R, Coddington J (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B Biol Sci 345:101–118

    Article  CAS  Google Scholar 

  • Coope G (2004) Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philos Trans R Soc B, Biol Sci 359:209–214

    Article  CAS  Google Scholar 

  • Cuttelod A, García N, Abdul Malak D, Temple H, Katariya V (2008) The Mediterranean: a biodiversity hotspot under threat. In: Vié JC, Hilton-Taylor C, Stuart SN (eds) The 2008 review of the IUCN red list of threatened species. IUCN Gland, Switzerland, pp 1–13

    Google Scholar 

  • Daufresne M, Roger MC, Capra H, Lamouroux N (2004) Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. Glob Change Biol 10:124–140

    Article  Google Scholar 

  • Daufresne M, Bady P, Fruget JF (2007) Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151:544–559

    Article  PubMed  Google Scholar 

  • Davies PM, Stewart BA (2013) Aquatic biodiversity in the Mediterranean climate rivers of southwestern Australia. Hydrobiologia 719:215–235

    Article  Google Scholar 

  • Domisch S, Jähnig SC, Haase P (2011) Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshw Biol 56:2009–2020

    Article  Google Scholar 

  • Domisch S, Araújo MB, Bonada N, Pauls SU, Jähnig SC, Haase P (2013) Modelling distribution in European stream macroinvertebrates under future climates. Glob Change Biol 19:752–762

    Article  Google Scholar 

  • Durance I, Ormerod SJ (2007) Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob Change Biol 13:942–957

    Article  Google Scholar 

  • Durance I, Ormerod SJ (2009) Trends in water quality and discharge confound longterm warming effects on river macroinvertebrates. Freshw Biol 54:388–405

    Article  CAS  Google Scholar 

  • Elliott JM, Hurley MA, Maberly SC (2000) The emergence period of sea trout fry in a Lake District stream correlates with the North Atlantic Oscillation. J Fish Biol 56:208–210

    Article  Google Scholar 

  • European Environmental Agency (2008) Impacts of Europe’s changing climate. In: European Environment Agency report, EEA Briefing 3/2008. IOP Publishing PhysicsWeb. http://www.eea.europa.eu/publications/briefing_2008_3. Accessed 13 December 2013

  • European Environmental Agency (2012) Climate change, impacts and vulnerability in Europe. In: European Environment Agency report, EEA Report 12/2012. IOP Publishing PhysicsWeb. http://www.eea.europa.eu/publications/briefing_2008_3. Accessed 13 December 2013

  • Filipe AF, Lawrence JE, Bonada N (2013) Vulnerability of stream biota to climate change in Mediterranean climate regions: a synthesis of ecological responses and conservation challenges. Hydrobiologia 719:331–351

    Google Scholar 

  • Finn DS, Zamora-Muñoz C, Múrria C, Sáinz-Bariáin M, Alba-Tercedor J (2014) Evidence from recently deglaciated mountain ranges that Baetis alpinus (Ephemeroptera) could lose significant genetic diversity as alpine glaciers disappear. Freshw Sci 33:1–11

    Article  Google Scholar 

  • Fosaa AM, Sykes MT, Lawesson JS, Gaard M (2004) Potential effects of climate change on plant species in the Faroe Islands. Glob Ecol Biogeogr 13:427–437

    Article  Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553

    Article  Google Scholar 

  • Gibson C, Meyer J, Poff N, Hay L, Georgakakos A (2005) Flow regime alterations under changing climate in two river basins: implications for freshwater ecosystems. River Res Appl 21:849–864

    Article  Google Scholar 

  • González-Megías A, Menéndez R, Roy D, Brereton T, Thomas C (2008) Changes in the composition of British butterfly assemblages over two decades. Glob Change Biol 14:1464–1474

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  CAS  PubMed  Google Scholar 

  • Graf W, Murphy J, Dahl J, Zamora-Muñoz C, López-Rodríguez MJ (2008) Distribution and ecological preferences of European freshwater organisms. Pensoft, Sofía

    Google Scholar 

  • Hampe A (2011) Plants on the move: The role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol 37:666–673

    Article  Google Scholar 

  • Hering D, Schmid-Kloiber A, Murphy J, Lücke S, Zamora-Muñoz C, López-Rodríguez MJ, Huber T, Graf W (2009) Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat Sci 71(1):3–14

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legancy of the quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Higler LWG, Solem JO (1986) Key to the larvae of north-west European Potamophylax species (Trichoptera, Limnephilidae) with notes on their biology. Aquat Insect 8:159–169

    Article  Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B Biol Sci 269:2163–2171

    Article  CAS  Google Scholar 

  • Hoffmann AA, Parsons PA (1997) Extreme environmental change and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoffsten PO (2004) Site-occupancy in relation to flight-morphology in caddisflies. Freshw Biol 49:810–817

    Article  Google Scholar 

  • Hogan C (2012) Sierra Nevada, Spain,The Encyclopedia of Earth. IOP Publishing PhysicsWeb. http://www.eoearth.org/view/article/172707. Accessed 13 December 2013

  • IPCC (2007) Climate change 2007: Synthesis Report. Contribution of Working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

  • Isaak DJ, Rieman BE (2013) Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Glob Change Biol 19:742–751

    Article  Google Scholar 

  • Jenkins M (2003) Prospects for biodiversity. Science 302:1175–1177

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Valverde A, Horta J (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Rev Iber Aracnol 8:151–161

    Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and uderstanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404

    Article  Google Scholar 

  • Kernan M, Battarbee RW, Moss BR (2010) Climate Change impacts on freshwater ecosystems. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Glob Ecol Biogeogr 12:403–410

    Article  Google Scholar 

  • Kullman L (2001) 20th Century climate warming and tree-limit rise in the Southern Scandes of Sweden. Ambio 30:72–80

    Article  CAS  Google Scholar 

  • Lavergne S, Molina J, Debussche M (2006) Fingerprints of environmental change on the rare Mediterranean flora: a 115-year study. Glob Change Biol 12:1466–1478

    Article  Google Scholar 

  • Lechthaler W, Stockinger W (2005) Trichoptera—Key to Larvae from Central Europe. CD-Edition. Eutaxa, Wien

  • Lepneva SG (1966) Fauna SSSR, Rucheiniki, Lichinki i Kukolki Podotryada Tse’noshchupikovykh. Zoologicheskii Institut Akademii Nauk SSSR, Moskva-Leningrad, 2(2). [Fauna of the U.S.S.R. Trichoptera, Larvae and Pupae of Integripalpia. Zoological Institute of the Academy of Science of the USSR, Moscow-St. Petersburg, volume 2, number 2. Translated by the Israel Program for Scientific Translations, Jerusalem (1971).]

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100

    Article  PubMed  Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20:538–548

    Article  PubMed  Google Scholar 

  • Malicky H (2004) Atlas of European Trichoptera, 2nd edn. Springer, The Netherlands

    Google Scholar 

  • Menéndez R, González-Megías A, Hill JK, Braschle B, Willis SG, Collingham RF, Roy DB, Thomas CD (2006) Species richness changes lag behind climate change. Proc R Soc Lond B Biol Sci 273:1465–1470

    Article  Google Scholar 

  • Menéndez R, González-Megías A, Jay-Robert P, Márquez-Ferrando R (2014) Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Glob Ecol Biogeogr 23:646–657

    Article  Google Scholar 

  • Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno JI, Rahman K, Beniston M (2014) Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol 517:1114–1127

    Article  Google Scholar 

  • Morse JC (ed) (2015) Trichoptera World Checklist. http://entweb.clemson.edu/database/trichopt/index.htm

  • Mulholland PJ, Best GR, Coutant CC, Hornsberger GM, Meyer JL, Robinson PJ, Stenberg JR, Turner RE, Vera-Herrera F, Wetzel R (1997) Effects of climate change on freshwater ecosystems of the South-Eastern United States and the Gulf Coast of Mexico. Hydrol Process 11:949–970

    Article  Google Scholar 

  • Múrria C, Zamora-Muñoz C, Bonada N, Ribera C, Prat N (2010) Genetic and morphological approaches to the problematic presence of three Hydropsyche species of the pellucidula group (Trichoptera: Hydropsychidae) in the westernmost Mediterranean Basin. Aquat Insect 32(2):85–98

    Article  Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, New York

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219

    Article  PubMed  Google Scholar 

  • Pace G, Bonada N, Prat N (2013) Long-term effects of climatic-hydrological drivers on macroinvertebrate richness and composition in two Mediterranean streams. Freshw Biol 58:1313–1328

    Article  Google Scholar 

  • Panzenbock M, Waringer J (1997) A key to fifth instar larvae of Halesus radiatus Curtis 1834, Halesus digitatus Schrank 1781 and Halesus tesselatus Rambur 1842 (Trichoptera: Limnephilidae), based on Austrian material. Aquat Insect 19:65–73

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450

    Article  Google Scholar 

  • Peterson TC, Vose R, Schmoyer R, Razuvaëv V (1997) Global Historical Climatology Network (GHCN) quality control of monthly temperature data. Int J Climatol 1179:1169–1179

    Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) A paradigm for river conservation and restoration. Bioscience 47:769–784

    Article  Google Scholar 

  • Poff NL, Brinson MM, Day JW (2002) Aquatic ecosystems and global climate change. Pew Center on Global Climate Change, Arlington

    Google Scholar 

  • Poff NL, Olden JD, Strayer DL (2012) Climate change and freshwater fauna extinction risk. In: Hannah L (ed) Saving a Millions Species. Island Press/Center for Resource Economics, Washington, pp 309–336

    Chapter  Google Scholar 

  • Poole GC, Berman CH (2001) An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ Manag 27:787–802

    Article  CAS  Google Scholar 

  • Quinteiro J, Rodríguez-Castro J, Castillejo J, Iglesias-Piñeiro J, Rey-Méndez M (2005) Phylogeny of slug species of the genus Arion: evidence of monophyly of Iberian endemics and of the existence of relict species in Pyrenean refuges. J Zool Syst Evol Res 43:139–148

    Article  Google Scholar 

  • Resh VH (1992) Recent trends in the use of Trichoptera in water quality monitoring. In: Otto C (ed) Proceedings of the 7th International Symposium on Trichoptera. Backhuys Publishers, Leiden, pp 285–291

    Google Scholar 

  • Ruiz-García A, Ferreras-Romero M (2007) The larva and life history of Stenophylax crossotus McLachlan, 1884 (Trichoptera: Limnephilidae) in an intermittent stream from the southwest of the Iberian Peninsula. Aquat Insect 29(1):9–16

    Article  Google Scholar 

  • Ruiz-García A, Salamanca-Ocaña JC, Ferreras-Romero M (2004) The larvae of Allogamus gibraltaricus González & Ruiz, 2001 and Allogamus mortoni (Navás, 1907) (Trichoptera, Limnephilidae), two endemic species of the Iberian Peninsula. Ann Limnol (Int J Lim) 40(4):343–349

    Article  Google Scholar 

  • Sáinz-Bariáin M, Zamora-Muñoz C (2012) The larva and life history of Stenophylax nycterobius (McLachlan, 1875) (Trichoptera: Limnephilidae) in high mountain streams (Sierra Nevada, Spain) and key to the Iberian larvae of the genus. Zootaxa 81(3483):71–81

    Google Scholar 

  • Sáinz-Bariáin M, Zamora-Muñoz C, González MA (2013) Los Tricópteros (Trichoptera). In: Ruano F, Tierno de Figueroa JM, Tinaut A (eds) Los insectos de Sierra Nevada: 200 años de historia, Vol I. Asociación Española de Entomología, Granada, pp 202–231

  • Sáinz-Cantero CE (1989) Coleópteros acuáticos de Sierra Nevada. Dissertation, University of Granada

  • Sanz-Elorza M, Dana ED, González A, Sobrino E (2003) Changes in the high-mountain vegetation of the Central Iberian Peninsula as a probable sign of global warming. Ann Bot Lond 92:273–280

    Article  Google Scholar 

  • Schmid F (1952) Contribution a l’étude des Trichoptères d’Espagne. Pirineos 26:627–695

    Google Scholar 

  • Schmid F (1957) Les genres Stenophylax Kol., Micropterna St. et Mesophylax Mc.L. (Trichopt. Limnoph.). Trabajos del Museo de Zoología 2(2): 3–49

  • Soberón J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488

    Article  Google Scholar 

  • StatSoft I. (2005) STATISTICA (data analysis software system), version 7.1. http://www.statsoft.com

  • Sweeney BW, Jackson JK, Newbold JD, Funk DH (1990) Climate Change and the life histories and biogeography of aquatic insects in eastern North America. In: Firth P, Fisher SG (eds) Global climate change and freshwater ecosystems. Springer, New York, pp 143–176

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Gralnger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Milles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tierno de Figueroa JM, López-Rodríguez MJ, Fenoglio S, Sánchez-Castillo P, Fochetti R (2012) Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719:137–186

    Article  Google Scholar 

  • Ulbrich U, May W, Li L, Lionello P, Pinto J, Somot S (2006) The Mediterranean climate change under global warming. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability, vol 4. Elsevier Science, Amsterdam, pp 399–415

    Google Scholar 

  • Van Vliet MTH, Ludwig F, Zwolsman JJG, Weedon GP, Kabat P (2011) Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour Res 47:W02544

    Google Scholar 

  • Vaughan IP, Ormerod SJ (2014) Linking interdecadal changes in British river ecosystems to water quality and climate dynamics. Glob Change Biol 20:2725–2740

    Article  Google Scholar 

  • Vieira-Lanero R (2000) Las larvas de los Tricópteros de Galicia (Insecta: Trichoptera). Dissertation, Universidad de Santiago de Compostela

  • Vieira-Lanero R, González MA, Cobo F (2003) The larva of Plectrocnemia laetabilis McLachlan, 1880 (Trichoptera; Polycentropodidae; Polycentropodinae). Ann Limnol (Int J Lim) 39:135–139

    Article  Google Scholar 

  • Wallace ID, Wallace B, Philipson GN (2003) A Key to the Case-bearing Caddis Larvae of Britain and Ireland. Freshwater Biological Association Scientific Publication 61, Liverpool

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Waringer J, Graf W (1997) Atlas der Österreichischen Köcherfliegenlarven: Unter Einschluss der angrenzenden Gebiete. Facultas-Universitätsverlag, Vienna

    Google Scholar 

  • Waringer J, Graf W (2011) Atlas der mitteleuropäischen Köcherfliegenlarven—Atlas of Central European Trichoptera Larvae. Erik Mauch Verlag, Dinkelscherben

    Google Scholar 

  • Webb BW (1987) The relationship between air and water temperatures for a Devon river. Rep Trans Devon Assoc Adv Sci Lit Art 119:l97–l222

    Google Scholar 

  • Wiggins GB (2004) Caddisflies. The Underwater Architects. University of Toronto, Press Incorporated, Toronto

    Google Scholar 

  • Williams DD, Feltmate BW (1992) Aquatic insects. C.A.B.International, Wallingford

    Google Scholar 

  • Williams N, Wiggins G (1981) A proposed setal nomenclature and homology for larval Trichoptera. In: Moretti GP (ed) Proceedings of the 3rd International Symposium on Trichoptera. Dr. W Junk publishers, The Hague, pp 421–429

    Chapter  Google Scholar 

  • Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Change Biol 13:1873–1887

    Article  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B 365:2093–2106

    Article  Google Scholar 

  • Xenopoulos MA, Lodge DM, Alcamo J, Märker M, Sxhulze K, Van Vuuren DP (2005) Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob Change Biol 11:1557–1564

    Article  Google Scholar 

  • Zamora-Muñoz C, Alba-Tercedor J (1992a) Caracterización y calidad de las aguas del río Monachil (Sierra Nevada, Granada). Factores físico-químicos y comunidades de macroinvertebrados acuáticos. Agencia del Medio Ambiente. Ed. Anel, Granada

  • Zamora-Muñoz C, Alba-Tercedor J (1992b) Description of the larva of Rhyacophila (Rhyacophila) nevada Schmid, 1952 and key to the species of Rhyacophila of the Iberian Peninsula (Trichoptera: Rhyacophilidae). Aquat Insect 14:65–71

    Article  Google Scholar 

  • Zamora-Muñoz C, Alba-Tercedor J (1995) Primera cita de Halesus tessellatus Rambur 1842 (Trichoptera: Limnephilidae) en la Península Ibérica. Bol Asoc Esp Entomol 19(3–4):200–201

    Google Scholar 

Download references

Acknowledgments

This research received support from the project ref 039/2007 funded by the O.A.P.N. of Spanish Ministerio de Medio Ambiente y Medio Rural y Marino. Funds were also provided by a pre-doctoral grant to Marta Sáinz-Bariáin by the Gobierno de Navarra, by projects from the Spanish Ministerio de Ciencia e Innovación (CGL2007-61856/BOS), and the Junta de Andalucía (RNM-02654/FEDER). The Sierra Nevada National Park and Andalucía Government (Junta de Andalucía) supplied logistic help and sampling permissions. We are very grateful to all the people who helped us during field work, especially to Alejandra Fernández, Modesto Berbel, José Manuel Tierno de Figueroa and Manuel Jesús López Rodríguez. We want to thanks M. Carmen Fajardo, Alicia Flores Martín, and Jesús Picazo Muñoz from Andalucía Government for their help in obtaining environmental data. These data were provided by the Centro de Estudios Hydrográficos of CEDEX (Ministerio de Fomento), and by Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas and Red de Información Ambiental de Andalucía (REDIAM) from Consejería de Medio Ambiente y Ordenación del Territorio (Junta de Andalucía). We are also very grateful to Elena Sáinz for checking the English, and the two anonymous reviewers for their valuable advices and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Sáinz-Bariáin.

Additional information

Marta Sáinz-Bariáin and Carmen Zamora-Muñoz contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

27_2015_457_MOESM1_ESM.pdf

Table S1. Geographical location and altitude of the sampling sites in the protected area of the Sierra Nevada (National and Nature Park). “*” indicates Gauging stations and “T1-T4” indicate Climate stations. Column SITE is represented in Fig. 1. (PDF 10 kb)

27_2015_457_MOESM2_ESM.pdf

Table S2. Environmental variables recorded in sampled streams in the Sierra Nevada: map sampling site; river; temperature (T); pH; electrical conductivity (Cond); dissolved oxygen (DO); ecosystem; percent boulder (B); percent gravel (G); percent sand (Sa); percent silt (Si); percent algae (Alg); percent woody debris (Woo); (-) not recorded. (PDF 6 kb)

27_2015_457_MOESM3_ESM.pdf

Table S3. Ecological preferences of caddisfly species present in the study area: stream zonation; altitude; microhabitat/substrate; current; temperature; emergence period) (Data source: Graf et al. 2008; Sáinz-Bariáin et al. 2013) (PDF 17 kb)

27_2015_457_MOESM4_ESM.pdf

Figure S1. Species accumulation curves for the inventory of caddisflies in the Sierra Nevada streams and rivers calculated with EstimateS 5.01 (Colwell 1997). Both curves were adjusted by the Clench equation (Studied period 1984-1987: Sobs = 26, R2 = 0.999, a/b = 31, slope of the curve = 0.2; Sobs/(a/b) = 84 %; Studied period 2008-2009: Sobs = 39; R2 = 0.999; a/b = 39, slope of the curve = 0.3; Sobs/(a/b) = 90 %. (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sáinz-Bariáin, M., Zamora-Muñoz, C., Soler, J.J. et al. Changes in Mediterranean high mountain Trichoptera communities after a 20-year period. Aquat Sci 78, 669–682 (2016). https://doi.org/10.1007/s00027-015-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0457-9

Keywords

Navigation