Aquatic Sciences

, Volume 78, Issue 4, pp 669–682 | Cite as

Changes in Mediterranean high mountain Trichoptera communities after a 20-year period

  • Marta Sáinz-Bariáin
  • Carmen Zamora-Muñoz
  • Juan J. Soler
  • Núria Bonada
  • Carmen Elisa Sáinz-Cantero
  • Javier Alba-Tercedor
Research Article


Rivers in Mediterranean high mountains are especially vulnerable to climate change because these areas are characterized by extreme climatic conditions of snowy winters and relatively frequent summer droughts. Climate induced alterations in temperature and the magnitude of high and low river flows are expected to have significant effects on aquatic fauna. Here, we analysed changes in the caddisfly communities of the Sierra Nevada during a 20-year period on an altitudinal gradient range of 952–3050 m. Furthermore, we related these changes to an observed increase in air temperature and decrease in river flow over the last 40 years. Overall, caddisfly species richness increased but patterns varied depending on altitude in a non-linear shape. Richness increased in altitude with maximum values at sites of intermediate-high altitude (1800–2000 m). The effects of the observed climate change may be explained by the colonization of headwaters and middle reaches from mid-lowland species or by those from streams and rivers in nearby mountain chains at lower altitude. The observed richness increase and its association with environmental conditions suggest that mountains with a considerable altitudinal gradient may function as refuges for species and populations during periods of climatic change, which strength the importance of the conservation of mountainous habitat.


Air temperature Altitude Water discharge Species distribution Aquatic ecosystems South Iberian Peninsula Climate change 



This research received support from the project ref 039/2007 funded by the O.A.P.N. of Spanish Ministerio de Medio Ambiente y Medio Rural y Marino. Funds were also provided by a pre-doctoral grant to Marta Sáinz-Bariáin by the Gobierno de Navarra, by projects from the Spanish Ministerio de Ciencia e Innovación (CGL2007-61856/BOS), and the Junta de Andalucía (RNM-02654/FEDER). The Sierra Nevada National Park and Andalucía Government (Junta de Andalucía) supplied logistic help and sampling permissions. We are very grateful to all the people who helped us during field work, especially to Alejandra Fernández, Modesto Berbel, José Manuel Tierno de Figueroa and Manuel Jesús López Rodríguez. We want to thanks M. Carmen Fajardo, Alicia Flores Martín, and Jesús Picazo Muñoz from Andalucía Government for their help in obtaining environmental data. These data were provided by the Centro de Estudios Hydrográficos of CEDEX (Ministerio de Fomento), and by Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas and Red de Información Ambiental de Andalucía (REDIAM) from Consejería de Medio Ambiente y Ordenación del Territorio (Junta de Andalucía). We are also very grateful to Elena Sáinz for checking the English, and the two anonymous reviewers for their valuable advices and suggestions that greatly improved the manuscript.

Supplementary material

27_2015_457_MOESM1_ESM.pdf (11 kb)
Table S1. Geographical location and altitude of the sampling sites in the protected area of the Sierra Nevada (National and Nature Park). “*” indicates Gauging stations and “T1-T4” indicate Climate stations. Column SITE is represented in Fig. 1. (PDF 10 kb)
27_2015_457_MOESM2_ESM.pdf (6 kb)
Table S2. Environmental variables recorded in sampled streams in the Sierra Nevada: map sampling site; river; temperature (T); pH; electrical conductivity (Cond); dissolved oxygen (DO); ecosystem; percent boulder (B); percent gravel (G); percent sand (Sa); percent silt (Si); percent algae (Alg); percent woody debris (Woo); (-) not recorded. (PDF 6 kb)
27_2015_457_MOESM3_ESM.pdf (18 kb)
Table S3. Ecological preferences of caddisfly species present in the study area: stream zonation; altitude; microhabitat/substrate; current; temperature; emergence period) (Data source: Graf et al. 2008; Sáinz-Bariáin et al. 2013) (PDF 17 kb)
27_2015_457_MOESM4_ESM.pdf (22 kb)
Figure S1. Species accumulation curves for the inventory of caddisflies in the Sierra Nevada streams and rivers calculated with EstimateS 5.01 (Colwell 1997). Both curves were adjusted by the Clench equation (Studied period 1984-1987: Sobs = 26, R2 = 0.999, a/b = 31, slope of the curve = 0.2; Sobs/(a/b) = 84 %; Studied period 2008-2009: Sobs = 39; R2 = 0.999; a/b = 39, slope of the curve = 0.3; Sobs/(a/b) = 90 %. (PDF 21 kb)


  1. Arnell R, Bates B, Land H, Magnusson JJ, Mulholland P (1996) Hydrology and freshwater ecology. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Climate Change 1995: Impacts, Adaptations, and Mitigation. Scientific-Technical, Cambridge University Press, Cambridge, pp 325–364Google Scholar
  2. Bálint M, Domisch S, Engelhardt CH, Haase P, Lehrian S, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Change 1:313–318CrossRefGoogle Scholar
  3. Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, New YorkGoogle Scholar
  4. Blondel J, Aronson J, Bodiou JY, Boeuf G (2010) The Mediterranean region: biological diversity in space and time. Oxford University Press, New YorkGoogle Scholar
  5. Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719:1–29CrossRefGoogle Scholar
  6. Bonada N, Zamora-Muñoz C, El Alami M, Múrria C, Prat N (2008) New record of Trichoptera in reference Mediterranean-climate rivers of the Iberian Peninsula and North of Africa: Taxonomical. Faunistical and Ecological aspects. Graellsia 64(2):189–208CrossRefGoogle Scholar
  7. Bradley C, Ormerod SJ (2001) Community persistence among stream invertebrates the North tracks Atlantic Oscillation. J Anim Ecol 70:987–996CrossRefGoogle Scholar
  8. Camargo JA, García de Jalón D (1988) Principales características morfológicas de los géneros ibéricos de la familia Limnephilidae (Trichoptera), en sus últimos estadios larvarios. Bol Asoc Esp Entomol 12:239–258Google Scholar
  9. Castillo-Martín A (2000) Parque Nacional de Sierra Nevada. Clima e Hidrología. In: Canseco (ed) Parque Nacional de Sierra NevadaGoogle Scholar
  10. Colwell R (1997) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User´s Guide), Version 5.01Google Scholar
  11. Colwell R, Coddington J (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B Biol Sci 345:101–118CrossRefGoogle Scholar
  12. Coope G (2004) Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philos Trans R Soc B, Biol Sci 359:209–214 CrossRefGoogle Scholar
  13. Cuttelod A, García N, Abdul Malak D, Temple H, Katariya V (2008) The Mediterranean: a biodiversity hotspot under threat. In: Vié JC, Hilton-Taylor C, Stuart SN (eds) The 2008 review of the IUCN red list of threatened species. IUCN Gland, Switzerland, pp 1–13Google Scholar
  14. Daufresne M, Roger MC, Capra H, Lamouroux N (2004) Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. Glob Change Biol 10:124–140CrossRefGoogle Scholar
  15. Daufresne M, Bady P, Fruget JF (2007) Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151:544–559CrossRefPubMedGoogle Scholar
  16. Davies PM, Stewart BA (2013) Aquatic biodiversity in the Mediterranean climate rivers of southwestern Australia. Hydrobiologia 719:215–235CrossRefGoogle Scholar
  17. Domisch S, Jähnig SC, Haase P (2011) Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshw Biol 56:2009–2020CrossRefGoogle Scholar
  18. Domisch S, Araújo MB, Bonada N, Pauls SU, Jähnig SC, Haase P (2013) Modelling distribution in European stream macroinvertebrates under future climates. Glob Change Biol 19:752–762CrossRefGoogle Scholar
  19. Durance I, Ormerod SJ (2007) Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob Change Biol 13:942–957CrossRefGoogle Scholar
  20. Durance I, Ormerod SJ (2009) Trends in water quality and discharge confound longterm warming effects on river macroinvertebrates. Freshw Biol 54:388–405CrossRefGoogle Scholar
  21. Elliott JM, Hurley MA, Maberly SC (2000) The emergence period of sea trout fry in a Lake District stream correlates with the North Atlantic Oscillation. J Fish Biol 56:208–210CrossRefGoogle Scholar
  22. European Environmental Agency (2008) Impacts of Europe’s changing climate. In: European Environment Agency report, EEA Briefing 3/2008. IOP Publishing PhysicsWeb. Accessed 13 December 2013
  23. European Environmental Agency (2012) Climate change, impacts and vulnerability in Europe. In: European Environment Agency report, EEA Report 12/2012. IOP Publishing PhysicsWeb. Accessed 13 December 2013
  24. Filipe AF, Lawrence JE, Bonada N (2013) Vulnerability of stream biota to climate change in Mediterranean climate regions: a synthesis of ecological responses and conservation challenges. Hydrobiologia 719:331–351Google Scholar
  25. Finn DS, Zamora-Muñoz C, Múrria C, Sáinz-Bariáin M, Alba-Tercedor J (2014) Evidence from recently deglaciated mountain ranges that Baetis alpinus (Ephemeroptera) could lose significant genetic diversity as alpine glaciers disappear. Freshw Sci 33:1–11CrossRefGoogle Scholar
  26. Fosaa AM, Sykes MT, Lawesson JS, Gaard M (2004) Potential effects of climate change on plant species in the Faroe Islands. Glob Ecol Biogeogr 13:427–437CrossRefGoogle Scholar
  27. Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553CrossRefGoogle Scholar
  28. Gibson C, Meyer J, Poff N, Hay L, Georgakakos A (2005) Flow regime alterations under changing climate in two river basins: implications for freshwater ecosystems. River Res Appl 21:849–864CrossRefGoogle Scholar
  29. González-Megías A, Menéndez R, Roy D, Brereton T, Thomas C (2008) Changes in the composition of British butterfly assemblages over two decades. Glob Change Biol 14:1464–1474CrossRefGoogle Scholar
  30. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448CrossRefPubMedGoogle Scholar
  31. Graf W, Murphy J, Dahl J, Zamora-Muñoz C, López-Rodríguez MJ (2008) Distribution and ecological preferences of European freshwater organisms. Pensoft, SofíaGoogle Scholar
  32. Hampe A (2011) Plants on the move: The role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol 37:666–673CrossRefGoogle Scholar
  33. Hering D, Schmid-Kloiber A, Murphy J, Lücke S, Zamora-Muñoz C, López-Rodríguez MJ, Huber T, Graf W (2009) Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat Sci 71(1):3–14CrossRefGoogle Scholar
  34. Hewitt GM (2000) The genetic legancy of the quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  35. Higler LWG, Solem JO (1986) Key to the larvae of north-west European Potamophylax species (Trichoptera, Limnephilidae) with notes on their biology. Aquat Insect 8:159–169CrossRefGoogle Scholar
  36. Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B Biol Sci 269:2163–2171CrossRefGoogle Scholar
  37. Hoffmann AA, Parsons PA (1997) Extreme environmental change and evolution. Cambridge University Press, CambridgeGoogle Scholar
  38. Hoffsten PO (2004) Site-occupancy in relation to flight-morphology in caddisflies. Freshw Biol 49:810–817CrossRefGoogle Scholar
  39. Hogan C (2012) Sierra Nevada, Spain,The Encyclopedia of Earth. IOP Publishing PhysicsWeb. Accessed 13 December 2013
  40. IPCC (2007) Climate change 2007: Synthesis Report. Contribution of Working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  41. Isaak DJ, Rieman BE (2013) Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Glob Change Biol 19:742–751CrossRefGoogle Scholar
  42. Jenkins M (2003) Prospects for biodiversity. Science 302:1175–1177CrossRefPubMedGoogle Scholar
  43. Jiménez-Valverde A, Horta J (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Rev Iber Aracnol 8:151–161Google Scholar
  44. Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and uderstanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404CrossRefGoogle Scholar
  45. Kernan M, Battarbee RW, Moss BR (2010) Climate Change impacts on freshwater ecosystems. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  46. Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Glob Ecol Biogeogr 12:403–410CrossRefGoogle Scholar
  47. Kullman L (2001) 20th Century climate warming and tree-limit rise in the Southern Scandes of Sweden. Ambio 30:72–80CrossRefGoogle Scholar
  48. Lavergne S, Molina J, Debussche M (2006) Fingerprints of environmental change on the rare Mediterranean flora: a 115-year study. Glob Change Biol 12:1466–1478CrossRefGoogle Scholar
  49. Lechthaler W, Stockinger W (2005) Trichoptera—Key to Larvae from Central Europe. CD-Edition. Eutaxa, WienGoogle Scholar
  50. Lepneva SG (1966) Fauna SSSR, Rucheiniki, Lichinki i Kukolki Podotryada Tse’noshchupikovykh. Zoologicheskii Institut Akademii Nauk SSSR, Moskva-Leningrad, 2(2). [Fauna of the U.S.S.R. Trichoptera, Larvae and Pupae of Integripalpia. Zoological Institute of the Academy of Science of the USSR, Moscow-St. Petersburg, volume 2, number 2. Translated by the Israel Program for Scientific Translations, Jerusalem (1971).]Google Scholar
  51. Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100CrossRefPubMedGoogle Scholar
  52. Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20:538–548CrossRefPubMedGoogle Scholar
  53. Malicky H (2004) Atlas of European Trichoptera, 2nd edn. Springer, The NetherlandsGoogle Scholar
  54. Menéndez R, González-Megías A, Hill JK, Braschle B, Willis SG, Collingham RF, Roy DB, Thomas CD (2006) Species richness changes lag behind climate change. Proc R Soc Lond B Biol Sci 273:1465–1470CrossRefGoogle Scholar
  55. Menéndez R, González-Megías A, Jay-Robert P, Márquez-Ferrando R (2014) Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Glob Ecol Biogeogr 23:646–657CrossRefGoogle Scholar
  56. Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno JI, Rahman K, Beniston M (2014) Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol 517:1114–1127CrossRefGoogle Scholar
  57. Morse JC (ed) (2015) Trichoptera World Checklist.
  58. Mulholland PJ, Best GR, Coutant CC, Hornsberger GM, Meyer JL, Robinson PJ, Stenberg JR, Turner RE, Vera-Herrera F, Wetzel R (1997) Effects of climate change on freshwater ecosystems of the South-Eastern United States and the Gulf Coast of Mexico. Hydrol Process 11:949–970CrossRefGoogle Scholar
  59. Múrria C, Zamora-Muñoz C, Bonada N, Ribera C, Prat N (2010) Genetic and morphological approaches to the problematic presence of three Hydropsyche species of the pellucidula group (Trichoptera: Hydropsychidae) in the westernmost Mediterranean Basin. Aquat Insect 32(2):85–98CrossRefGoogle Scholar
  60. Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, New YorkGoogle Scholar
  61. Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219CrossRefPubMedGoogle Scholar
  62. Pace G, Bonada N, Prat N (2013) Long-term effects of climatic-hydrological drivers on macroinvertebrate richness and composition in two Mediterranean streams. Freshw Biol 58:1313–1328CrossRefGoogle Scholar
  63. Panzenbock M, Waringer J (1997) A key to fifth instar larvae of Halesus radiatus Curtis 1834, Halesus digitatus Schrank 1781 and Halesus tesselatus Rambur 1842 (Trichoptera: Limnephilidae), based on Austrian material. Aquat Insect 19:65–73CrossRefGoogle Scholar
  64. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  65. Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450CrossRefGoogle Scholar
  66. Peterson TC, Vose R, Schmoyer R, Razuvaëv V (1997) Global Historical Climatology Network (GHCN) quality control of monthly temperature data. Int J Climatol 1179:1169–1179Google Scholar
  67. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) A paradigm for river conservation and restoration. Bioscience 47:769–784CrossRefGoogle Scholar
  68. Poff NL, Brinson MM, Day JW (2002) Aquatic ecosystems and global climate change. Pew Center on Global Climate Change, ArlingtonGoogle Scholar
  69. Poff NL, Olden JD, Strayer DL (2012) Climate change and freshwater fauna extinction risk. In: Hannah L (ed) Saving a Millions Species. Island Press/Center for Resource Economics, Washington, pp 309–336CrossRefGoogle Scholar
  70. Poole GC, Berman CH (2001) An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ Manag 27:787–802CrossRefGoogle Scholar
  71. Quinteiro J, Rodríguez-Castro J, Castillejo J, Iglesias-Piñeiro J, Rey-Méndez M (2005) Phylogeny of slug species of the genus Arion: evidence of monophyly of Iberian endemics and of the existence of relict species in Pyrenean refuges. J Zool Syst Evol Res 43:139–148CrossRefGoogle Scholar
  72. Resh VH (1992) Recent trends in the use of Trichoptera in water quality monitoring. In: Otto C (ed) Proceedings of the 7th International Symposium on Trichoptera. Backhuys Publishers, Leiden, pp 285–291Google Scholar
  73. Ruiz-García A, Ferreras-Romero M (2007) The larva and life history of Stenophylax crossotus McLachlan, 1884 (Trichoptera: Limnephilidae) in an intermittent stream from the southwest of the Iberian Peninsula. Aquat Insect 29(1):9–16CrossRefGoogle Scholar
  74. Ruiz-García A, Salamanca-Ocaña JC, Ferreras-Romero M (2004) The larvae of Allogamus gibraltaricus González & Ruiz, 2001 and Allogamus mortoni (Navás, 1907) (Trichoptera, Limnephilidae), two endemic species of the Iberian Peninsula. Ann Limnol (Int J Lim) 40(4):343–349CrossRefGoogle Scholar
  75. Sáinz-Bariáin M, Zamora-Muñoz C (2012) The larva and life history of Stenophylax nycterobius (McLachlan, 1875) (Trichoptera: Limnephilidae) in high mountain streams (Sierra Nevada, Spain) and key to the Iberian larvae of the genus. Zootaxa 81(3483):71–81Google Scholar
  76. Sáinz-Bariáin M, Zamora-Muñoz C, González MA (2013) Los Tricópteros (Trichoptera). In: Ruano F, Tierno de Figueroa JM, Tinaut A (eds) Los insectos de Sierra Nevada: 200 años de historia, Vol I. Asociación Española de Entomología, Granada, pp 202–231Google Scholar
  77. Sáinz-Cantero CE (1989) Coleópteros acuáticos de Sierra Nevada. Dissertation, University of GranadaGoogle Scholar
  78. Sanz-Elorza M, Dana ED, González A, Sobrino E (2003) Changes in the high-mountain vegetation of the Central Iberian Peninsula as a probable sign of global warming. Ann Bot Lond 92:273–280CrossRefGoogle Scholar
  79. Schmid F (1952) Contribution a l’étude des Trichoptères d’Espagne. Pirineos 26:627–695Google Scholar
  80. Schmid F (1957) Les genres Stenophylax Kol., Micropterna St. et Mesophylax Mc.L. (Trichopt. Limnoph.). Trabajos del Museo de Zoología 2(2): 3–49Google Scholar
  81. Soberón J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488CrossRefGoogle Scholar
  82. StatSoft I. (2005) STATISTICA (data analysis software system), version 7.1.
  83. Sweeney BW, Jackson JK, Newbold JD, Funk DH (1990) Climate Change and the life histories and biogeography of aquatic insects in eastern North America. In: Firth P, Fisher SG (eds) Global climate change and freshwater ecosystems. Springer, New York, pp 143–176Google Scholar
  84. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Gralnger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Milles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  85. Tierno de Figueroa JM, López-Rodríguez MJ, Fenoglio S, Sánchez-Castillo P, Fochetti R (2012) Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719:137–186CrossRefGoogle Scholar
  86. Ulbrich U, May W, Li L, Lionello P, Pinto J, Somot S (2006) The Mediterranean climate change under global warming. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability, vol 4. Elsevier Science, Amsterdam, pp 399–415Google Scholar
  87. Van Vliet MTH, Ludwig F, Zwolsman JJG, Weedon GP, Kabat P (2011) Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour Res 47:W02544Google Scholar
  88. Vaughan IP, Ormerod SJ (2014) Linking interdecadal changes in British river ecosystems to water quality and climate dynamics. Glob Change Biol 20:2725–2740CrossRefGoogle Scholar
  89. Vieira-Lanero R (2000) Las larvas de los Tricópteros de Galicia (Insecta: Trichoptera). Dissertation, Universidad de Santiago de CompostelaGoogle Scholar
  90. Vieira-Lanero R, González MA, Cobo F (2003) The larva of Plectrocnemia laetabilis McLachlan, 1880 (Trichoptera; Polycentropodidae; Polycentropodinae). Ann Limnol (Int J Lim) 39:135–139CrossRefGoogle Scholar
  91. Wallace ID, Wallace B, Philipson GN (2003) A Key to the Case-bearing Caddis Larvae of Britain and Ireland. Freshwater Biological Association Scientific Publication 61, LiverpoolGoogle Scholar
  92. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  93. Waringer J, Graf W (1997) Atlas der Österreichischen Köcherfliegenlarven: Unter Einschluss der angrenzenden Gebiete. Facultas-Universitätsverlag, ViennaGoogle Scholar
  94. Waringer J, Graf W (2011) Atlas der mitteleuropäischen Köcherfliegenlarven—Atlas of Central European Trichoptera Larvae. Erik Mauch Verlag, DinkelscherbenGoogle Scholar
  95. Webb BW (1987) The relationship between air and water temperatures for a Devon river. Rep Trans Devon Assoc Adv Sci Lit Art 119:l97–l222Google Scholar
  96. Wiggins GB (2004) Caddisflies. The Underwater Architects. University of Toronto, Press Incorporated, TorontoGoogle Scholar
  97. Williams DD, Feltmate BW (1992) Aquatic insects. C.A.B.International, WallingfordGoogle Scholar
  98. Williams N, Wiggins G (1981) A proposed setal nomenclature and homology for larval Trichoptera. In: Moretti GP (ed) Proceedings of the 3rd International Symposium on Trichoptera. Dr. W Junk publishers, The Hague, pp 421–429CrossRefGoogle Scholar
  99. Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268CrossRefGoogle Scholar
  100. Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146CrossRefPubMedGoogle Scholar
  101. Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Change Biol 13:1873–1887CrossRefGoogle Scholar
  102. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B 365:2093–2106CrossRefGoogle Scholar
  103. Xenopoulos MA, Lodge DM, Alcamo J, Märker M, Sxhulze K, Van Vuuren DP (2005) Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob Change Biol 11:1557–1564CrossRefGoogle Scholar
  104. Zamora-Muñoz C, Alba-Tercedor J (1992a) Caracterización y calidad de las aguas del río Monachil (Sierra Nevada, Granada). Factores físico-químicos y comunidades de macroinvertebrados acuáticos. Agencia del Medio Ambiente. Ed. Anel, GranadaGoogle Scholar
  105. Zamora-Muñoz C, Alba-Tercedor J (1992b) Description of the larva of Rhyacophila (Rhyacophila) nevada Schmid, 1952 and key to the species of Rhyacophila of the Iberian Peninsula (Trichoptera: Rhyacophilidae). Aquat Insect 14:65–71CrossRefGoogle Scholar
  106. Zamora-Muñoz C, Alba-Tercedor J (1995) Primera cita de Halesus tessellatus Rambur 1842 (Trichoptera: Limnephilidae) en la Península Ibérica. Bol Asoc Esp Entomol 19(3–4):200–201Google Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Marta Sáinz-Bariáin
    • 1
  • Carmen Zamora-Muñoz
    • 1
  • Juan J. Soler
    • 2
  • Núria Bonada
    • 3
  • Carmen Elisa Sáinz-Cantero
    • 1
  • Javier Alba-Tercedor
    • 1
  1. 1.Departamento de Zoología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones CientíficasAlmeríaSpain
  3. 3.Grup de Recerca Freshwater Ecology and Management (FEM), Departament d’Ecologia, Facultat de BiologiaUniversitat de Barcelona (UB)BarcelonaSpain

Personalised recommendations