Skip to main content
Log in

Universal Bounds for the Hardy–Littlewood Inequalities on Multilinear Forms

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The Hardy–Littlewood inequalities for multilinear forms on sequence spaces state that for all positive integers \(m,n\ge 2\) and all m-linear forms \(T:\ell _{p_{1}}^{n}\times \cdots \times \ell _{p_{m}}^{n}\rightarrow {\mathbb {K}}\) (\({\mathbb {K}}={\mathbb {R}}\) or \({\mathbb {C}}\)) there are constants \(C_{m}\ge 1\) (not depending on n) such that

$$\begin{aligned} \left( \sum _{j_{1},\ldots ,j_{m}=1}^{n}\left| T(e_{j_{1}},\ldots ,e_{j_{m}})\right| ^{\rho }\right) ^{\frac{1}{\rho }}\le C_{m}\sup _{\left\| x_{1}\right\| ,\ldots ,\left\| x_{m}\right\| \le 1}\left| T(x_{1},\ldots ,x_{m})\right| , \end{aligned}$$

where \(\rho =\frac{2m}{m+1-2\left( \frac{1}{p_{1}}+\cdots +\frac{1}{p_{m}}\right) }\) if \(0\le \frac{1}{p_{1}}+\cdots +\frac{1}{p_{m}}\le \frac{1}{2}\) or \(\rho =\frac{1}{1-\left( \frac{1}{p_{1}}+\cdots +\frac{1}{p_{m}}\right) }\) if \(\frac{1}{2}\le \frac{1}{p_{1}}+\cdots +\frac{1}{p_{m}}<1\). Good estimates for the Hardy–Littlewood constants are, in general, associated to applications in Mathematics and even in Physics, but the exact behavior of these constants is still unknown. In this note we give some new contributions to the behavior of the constants in the case \(\frac{1}{2}\le \frac{1}{p_{1}}+\cdots +\frac{1}{p_{m}}<1\). As a consequence of our main result, we present a generalization and a simplified proof of a result due to Aron et al. on certain Hardy–Littlewood type inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albuquerque, N., Araújo, G., Maia, M., Nogueira, T., Pellegrino, D., Santos, J.: Optimal Hardy–Littlewood inequalities uniformly bounded by a universal constant. Ann. Math. Blaise Pascal 25, 1–20 (2018)

    Article  Google Scholar 

  2. Albuquerque, N., Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: Sharp generalizations of the multilinear Bohnenblust–Hille inequality. J. Funct. Anal. 266, 3726–3740 (2014)

    Article  MathSciNet  Google Scholar 

  3. Albuquerque, N., Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: Optimal Hardy–Littlewood type inequalities for polynomials and multilinear operators. Israel J. Math. 211(1), 197–220 (2016)

    Article  MathSciNet  Google Scholar 

  4. Albuquerque, N., Rezende, L.: Anisotropic regularity principle in sequence spaces and applications. Commun. Contem. Math. (2017). https://doi.org/10.1142/S0219199717500870

    Article  Google Scholar 

  5. Araújo, G., Pellegrino, D.: On the constants of the Bohnenblust–Hille and Hardy–Littlewood inequalities. Bull. Braz. Math. Soc. (N.S.) 48(1), 141–169 (2017)

    Article  MathSciNet  Google Scholar 

  6. Araújo, G., Pellegrino, D., Silva e Silva, D.D.: On the upper bounds for the constants of the Hardy–Littlewood inequality. J. Funct. Anal. 267, 1878–1888 (2014)

    Article  MathSciNet  Google Scholar 

  7. Aron, R., Núñez-Alarcón, D., Pellegrino, D., Serrano-Rodríguez, D.: Optimal exponents for Hardy–Littlewood inequalities for m-linear operators. Linear Algebra Appl. 531, 399–422 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: The Bohr radius of the \(n\)-dimensional polydisc is equivalent to \(\sqrt{(\log n)/n}\). Adv. Math. 264, 726–746 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931)

    Article  MathSciNet  Google Scholar 

  10. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  11. Dimant, A., Sevilla-Peris, P.: Summation of coefficients of polynomials on \(l_{p}\) spaces. Publ. Mat. 60(2), 289–310 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hardy, G., Littlewood, J.E.: Bilinear forms bounded in space [p, q]. Q. J. Math. 5, 241–254 (1934)

    Article  Google Scholar 

  13. Littlewood, J.E.: On bounded bilinear forms in an infinite number of variables. Quart. J. (Oxford Ser.) 1, 164–174 (1930)

    Article  Google Scholar 

  14. Montanaro, A.: Some applications of hypercontractive inequalities in quantum information theory. J. Math. Phys. 53(12), 122206 (2012)

    Article  MathSciNet  Google Scholar 

  15. Pellegrino, D., Santos, J., Serrano-Rodríguez, D., Teixeira, E.: A regularity principle in sequence spaces and applications. Bull. Sci. Math. 141(8), 802–837 (2017)

    Article  MathSciNet  Google Scholar 

  16. Pietsch, A.: Ideals of multilinear functionals. In: Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Teubner-texte Math., vol. 67, pp. 185–199 (1983)

  17. Praciano-Pereira, T.: On bounded multilinear forms on a class of lp spaces. J. Math. Anal. Appl. 81(2), 561–568 (1981). https://doi.org/10.1016/0022-247X(81)90082-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for the careful reading and the valuable comments that helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo S. Araújo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, G.S., Câmara, K.S. Universal Bounds for the Hardy–Littlewood Inequalities on Multilinear Forms. Results Math 73, 124 (2018). https://doi.org/10.1007/s00025-018-0886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0886-6

Keywords

Mathematics Subject Classification

Navigation