Skip to main content

Advertisement

Log in

On the Constants of the Bohnenblust–Hille and Hardy–Littlewood Inequalities

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

For \(\mathbb {K}=\mathbb {R}\) or \(\mathbb {C}\), the Hardy–Littlewood inequality for m-linear forms asserts that for \(4\le 2m\le p\le \infty \) there exists a constant \(C_{m,p}^{\mathbb {K}}\ge 1\) such that, for all m-linear forms \(T:\ell _{p}^{n}\times \cdots \times \ell _{p}^{n}\rightarrow \mathbb {K}\), and all positive integers n,

This result was proved by Hardy and Littlewood (QJ Math 5:241–254, 1934) for bilinear forms and extended to m-linear forms by Praciano-Pereira (J Math Anal Appl 81:561–568, 1981). The case \(p=\infty \) recovers the Bohnenblust–Hille inequality (Ann Math 32:600–622, 1931). In this paper, among other results, we show that for \(p>2m(m-1)^2\) the optimal constants satisfying the Hardy–Littlewood inequality for m-linear forms are dominated by the best known constants of the corresponding Bohnenblust–Hille inequality. For instance, we show that if \(p>2m(m-1)^2\), then

$$\begin{aligned} \textstyle C_{m,p}^{\mathbb {C}}\le \prod \limits _{j=2}^{m}\Gamma \left( 2-\frac{1}{j}\right) ^{\frac{j}{2-2j}}<m^{\frac{1-\gamma }{2}}, \end{aligned}$$

where \(\gamma \) is the Euler–Mascheroni constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, R., Fournier, J.J.F.: Sobolev spaces, Academic Press (2003)

  • Albuquerque, N., Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: Sharp generalizations of the multilinear Bohnenblust-Hille inequality. J. Funct. Anal. 266, 3726–3740 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Albuquerque, N., Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: Optimal Hardy-Littlewood type inequalities for polynomials and multilinear operators. Israel J. Math. 211(1), 197–220 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Albuquerque, N., Núñez-Alarcón, D., Santos, J., Serrano-Rodríguez, D.M.: Absolutely summing multilinear operators via interpolation. J. Funct. Anal. 269(6), 1636–1651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Albuquerque, N., Araújo, G., Pellegrino, D., Seoane-Sepúlveda, J.B.: Hölder’s inequality: some recent and unexpected applications. Bull. Belg. Math. Soc. Simon Stevin 24(2) (2017)

  • Araújo, G., Pellegrino, D., Silva, D.D.P.: On the upper bounds for the constants of the Hardy-Littlewood inequality. J. Funct. Anal. 267, 1878–1888 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: The Bohr radius of the \(n\)-dimensional polydisc is equivalent to \(\sqrt{(\log n)/n}\). Adv. Math. 264, 726–746 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Benedek, A., Panzone, R.: The space \(L_{p}\), with mixed norm. Duke Math. J. 28(3), 301–324 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  • Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32, 600–622 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  • Botelho, G., Michels, C., Pellegrino, D.: Complex interpolation and summability properties of multilinear operators. Rev. Mat. Complut. 23, 139–161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Botelho, G., Santos, J.: A Pietsch domination theorem for \(\left( l_{p}^{s}, l_{p}\right)\)-summing operators. Arch. Math. (Basel) 104, 47–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Campos, J.R.: Cohen and multiple Cohen strongly summing multilinear operators. Linear Multil. Algeb. 62(3), 322–346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Campos, J.R., Cavalcante, W., Fávaro, V.V., Núñez-Alarcón, D., Pellegrino, D., Serrano-Rodríguez, D.M.: Polynomial and multilinear Hardy–Littlewood inequalities: analytical and numerical approaches, arXiv:1503.00618 [math.FA]

  • Davie, A.M.: Quotient algebras of uniform algebras. J. Lond. Math. Soc. 7, 31–40 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Defant, A., Floret, K.: Tensor norms and operator ideals, North-Holland Mathematics Studies, 176. North-Holland Publishing Co., Amsterdam (1993)

    MATH  Google Scholar 

  • Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K.: The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann Math. 174(2), 485–497 (2011)

  • Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 250, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Defant, A., Sevilla-Peris, P.: The Bohnenblust-Hille cycle of ideas from a modern point of view. Funct. Approx. Comment. Math. 50(1), 55–127 (2014)

    MathSciNet  MATH  Google Scholar 

  • Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  • Dimant, V.: Strongly p-summing multilinear operators. J. Math. Anal. Appl. 278(1), 182–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Dimant, V., Sevilla–Peris, P.: Summation of coefficients of polynomials on \(\ell _{p}\) spaces. Publ. Mat. 60, 289–310 (2016)

  • Dineen, S.: Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag. London Ltd., London (1999)

    Book  Google Scholar 

  • Fournier, J.J.: Mixed norms and rearrangements: Sobolev’s inequality and Littlewood’s inequality. Annali di Matematica Pura ed Applicata 148, 51–76 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Garling, D.J.H.: Inequalities: a journey into linear analysis. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  • Haagerup, U.: The best constants in the Khinchine inequality. Studia Math. 70, 231–283 (1982)

    MATH  Google Scholar 

  • Hardy, G., Littlewood, J.E.: Bilinear forms bounded in space \([p, q]\). Quart. J. Math. 5, 241–254 (1934)

    Article  MATH  Google Scholar 

  • König, H.: On the best constants in the Khintchine inequality for Steinhaus variables. Israel J. Math 203, 23–57 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Littlewood, J.E.: On bounded bilinear forms in an infinite number of variables. Quart. J. (Oxford Ser.) 1, 164–174 (1930)

    Article  MATH  Google Scholar 

  • Montanaro, A.: Some applications of hypercontractive inequalities in quantum information theory, J. Math. Physics 53 (2012)

  • Matos, M.C.: Fully absolutely summing mappings and Hilbert Schmidt operators. Collect. Math. 54, 111–136 (2003)

    MathSciNet  MATH  Google Scholar 

  • Mujica, J.: Complex analysis in Banach spaces. Dover Publ. Inc., New York (2010)

    Google Scholar 

  • Pellegrino, D.: The optimal constants of the mixed \(\left(\ell _{1},\ell _{2}\right) \)-Littlewood inequality. J. Number Theory 160, 11–18 (2016)

    Article  MathSciNet  Google Scholar 

  • Pellegrino, D., Serrano-Rodríguez, D.: On the mixed \(\left( \ell _{1},\ell _{2}\right) \)-Littlewood inequality for real scalars and applications, arXiv:1510.00909 [math.FA]

  • Pérez-García, D.: Comparing different classes of absolutely summing multilinear operators. Arch. Math. (Basel) 85, 258–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Pérez-García, D.: Operadores multilineales absolutamente sumantes. Universidad Complutense de Madrid, Thesis (2003)

    Google Scholar 

  • Pietsch, A.: Absolut \(p\)-summierende Abbildungen in normieten Raumen. Studia Math. 27, 333–353 (1967)

    MATH  Google Scholar 

  • Popa, D.: A new distinguishing feature for summing, versus dominated and multiple summing operators. Arch. Math. (Basel) 96(5), 455–462 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Popa, D.: Cohen-Kwapien type theorems for multiple summing operators. Quaest. Math. 36(3), 399–410 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Popa, D.: Multiple summing operators on \(\ell _{p}\) spaces. Studia Math. 225(1), 9–28 (2014)

    Article  MathSciNet  Google Scholar 

  • Popa, D.: Multiple Rademacher means and their applications. J. Math. Anal. Appl. 386, 699–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Popa, D., Sinnamon, G.: Blei’s inequality and coordinatewise multiple summing operators. Publ. Mat. 57, 455–475 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Pietsch, A.: Ideals of multilinear functionals, Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Teubner–texte Math. 67 (Teubner, Leipzig, 1983) 185–199

  • Praciano-Pereira, T.: On bounded multilinear forms on a class of \(\ell _{p}\) spaces. J. Math. Anal. Appl. 81, 561–568 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Queffélec, H.: Bohr’s vision of ordinary Dirichlet series: old and new results. J. Anal. 3, 45–60 (1995)

    MathSciNet  MATH  Google Scholar 

  • Rueda, P., Sánchez-Pérez, E.A.: Factorization of \(p\)-dominated polynomials through \(L_{p}\)-spaces. Michigan Math. J. 63(2), 345–353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Sawa, J.: The best constant in the Khintchine inequality for complex Steinhaus variables, the case \(p=1\). Stud. Math. 81, 107–126 (1985)

    MathSciNet  MATH  Google Scholar 

  • Serrano-Rodriguez, D.M.: Absolutely \(\gamma \)-summing multilinear operators. Linear Algebra Appl. 439(12), 4110–4118 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referee for important suggestions that helped to improve the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Araújo.

Additional information

D. Pellegrino is supported by CNPq.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, G., Pellegrino, D. On the Constants of the Bohnenblust–Hille and Hardy–Littlewood Inequalities. Bull Braz Math Soc, New Series 48, 141–169 (2017). https://doi.org/10.1007/s00574-016-0016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0016-6

Keywords

Mathematics Subject Classification

Navigation