Skip to main content
Log in

On Algebraic Structures Related to Beltrami–Klein Model of Hyperbolic Geometry

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A new approach to the algebraic structures related to hyperbolic geometry comes from Einstein’s special theory of relativity in 1988 (cf. Ungar, in Found Phys Lett 1:57–89, 1988). Ungar employed the binary operation of Einsteins velocity addition to introduce into hyperbolic geometry the concepts of vectors, angles and trigonometry in full analogy with Euclidean geometry (cf. Ungar, in Math Appl 49:187–221, 2005). Another approach is from Karzel for algebraization of absolute planes in the sense of Karzel et al. (Einführung in die Geometrie, 1973). In this paper we are going to develop a formulary for the Beltrami–Klein model of hyperbolic plane inside the unit circle \({\mathbb D}\) of the complex numbers \({\mathbb C}\) with geometric approach of Karzel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capodaglio R.: Two loops in the absolute plane. Mitt. Math. Ges. Hamburg 23, 95–104 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Karzel H., Wefelscheid H.: A geometric construction of the K-loop of a hyperbolic space. Geom. Dedicata 58, 227–236 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Karzel H.: Recent developments on absolute geometries and algebraization by K-loops. Discrete Math. 208/209, 387–409 (1999)

    Article  MathSciNet  Google Scholar 

  4. Karzel H., Sörensen K., Windelberg D.: Einführung in die Geometrie. Vandenhoeck, Göttingen (1973)

    MATH  Google Scholar 

  5. Karzel H., Marchi M.: Relation between the K-loop and the defect of an absolute plane. Resultate Math. 47, 305–326 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Ungar A.A.: Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1, 57–89 (1988)

    Article  MathSciNet  Google Scholar 

  7. Ungar A.A.: Thomas precession and its associated grouplike structure. Am. J. Phys. 59, 824–834 (1991)

    Article  MathSciNet  Google Scholar 

  8. Ungar A.A.: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces. Kluwer, Dordrecht (2001)

    MATH  Google Scholar 

  9. Ungar A.A.: Einstein’s special relativity: unleashing the power of its hyperbolic geometry. Comput. Math. Appl. 49, 187–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ungar A.A.: Analytic Hyperbolic Geometry: Mathematical Foundations and Applications. World Scientific, Hackensack (2005)

    Book  MATH  Google Scholar 

  11. Varičak V.: Über die Nichteuklidische Interpretation der Relativitätstheorie. Jahresber. Dtsch. Math.-Ver. 21, 103–127 (1912)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed-Ghahreman Taherian.

Additional information

To Professor Helmut Karzel on the occasion of his 86th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taherian, SG. On Algebraic Structures Related to Beltrami–Klein Model of Hyperbolic Geometry. Results. Math. 57, 205–219 (2010). https://doi.org/10.1007/s00025-010-0021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-010-0021-9

Mathematics Subject Classification (2000)

Keywords

Navigation