Skip to main content
Log in

A geometric construction of the K-loop of a hyperbolic space

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

It is well known that the homogeneous orthochronous proper Lorentzgroup Γ is isomorphic to the proper motion group of the hyperbolic space. To each Lorentz boost β ε Γ \ {id} there corresponds in the hyperbolic space exactly one lineL β such that β fixes each of the two ends ofL β . Furthermore β has no fixed points but each plane containingL β is fixed by β. If we fix a pointo, then to each other pointa there is exactly one boosta + ε Γ such thatL a+ is the line joiningo anda anda +(o)=a. The set P of points of the hyperbolic space is turned in a K-loop (P, +) bya+b:=a +(b). Each line of the hyperbolic space has the representationa+Z(b) wherea, b εP,b ≠ 0 andZ(b):= {x εP |x+b=b+x}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benz, W.:Geometrische Transformationen unter besonderer Berücksichtigung der Lorentztransformationen, BI-Wiss.-Verlag, Mannheim, Leipzig, Wien, Zürich, 1992.

    Google Scholar 

  2. Grundhöfer, T. and Salzmann, H.: Locally compact double loops and ternary fields, in O. Chein, Pflugfelder, H. O. and Smith, J. D. H.,Quasigroups and Loops, Theory and Applications, Heldermann Verlag, Berlin, 1990.

    Google Scholar 

  3. Karzel, H. and Konrad, A.: Raum-Zeit-Welt und hyperbolische Geometrie,Beiträge zur Geometrie und Algebra Nr.29 (1994) TUM-M 9412, TU München, 175p.

  4. Karzel, H. and Konrad, A.: Eigenschaften angeordneter Räume mit hyperbolischer Inzidenzstruktur,Beiträge zur Geometrie und Algebra Nr.28 (1994), TUM-M 9415, TU München, 27–36.

  5. Karzel, H., Pianta, S. and Stanik, R.: Generalized Euclidean and elliptic geometries, their connections and automorphism groups,J. Geom. 48 (1993), 109–143.

    Google Scholar 

  6. Karzel, H., Sörensen, K. and Windelberg, D.:Einführung in die Geometrie, Göttingen, 1973.

  7. Karzel, H. and Wefelscheid, H.: Groups with an involutory antiautomorphism and K-loops; application to space-time-world and hyperbolic geometry I,Results Math. 23 (1993), 338–354.

    Google Scholar 

  8. Kolb, E. and Kreuzer, A.: Geometry of kinematic K-loops,Abh. Math. Sem. Univ. Hamburg, to appear.

  9. Kreuzer, A. and Wefelscheid H.: On K-loops of finite order,Results Math. 25 (1994), 79–102.

    Google Scholar 

  10. Schröder, E. M.:Vorlesungen über Geometrie, Bd. I, BI-Wiss.-Verlag, Mannheim, Leipzig, Wien, Zürich, 1991.

    Google Scholar 

  11. Sperner, E.: Ein gruppentheoretischer Beweis des Satzes von Desargues in der absoluten Axiomatik,Arch. Math. 5 (1954), 458–468. Nachgedruckt in: Karzel, H. and Sörensen, K.:Wandel von Begriffsbildungen in der Mathematik, Darmstadt, 1984, pp. 177–188.

    Google Scholar 

  12. Ungar, A. A.: Group-like structure underlying the unit ball in real inner product spaces,Results Math. 18 (1990), 335–364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to H. Salzmann on the occasion of his 65th birthday

Supported by the NATO Scientific Affairs Division grant CRG 900103.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karzel, H., Wefelscheid, H. A geometric construction of the K-loop of a hyperbolic space. Geom Dedicata 58, 227–236 (1995). https://doi.org/10.1007/BF01263454

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01263454

Mathematics Subject Classifications (1991)

Navigation