Skip to main content
Log in

Delineation of Aquifer Boundary by Two Vertical Superconducting Gravimeters in a Karst Hydrosystem, France

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Mass distribution on Earth is continuously changing due to various physical processes beneath the Earth's surface or on the surface. Some of the primary sources for these mass displacements are tidal forces, atmospheric and oceanic loading, and seasonal changes in continental water distribution. The development of relative cryogenic gravimeters, the Superconducting Gravimeters (SGs), has made it possible to characterize and monitor such mass variations at orders of magnitudes as small as a few nm/s2 (1 nm/s2–10–10 g where g is the mean gravity at the Earth’s surface). Our study focuses on the hydrodynamics of the 900 m thick unsaturated zone of the low-noise underground research laboratory (Laboratoire Souterrain à Bas Bruit, LSBB) located in Rustrel (France) using a unique configuration of two SGs vertically arranged 520 m depth apart. The installation of an SG (iGrav31) at the site surface several years after installing the first (iOSG24) inside a tunnel has provided several new insights into the understanding of the hydrological processes occurring in the LSBB. By comparing differential and residual gravity time-series together with global hydrological loading models, we find that most water-storage changes occur in the unsaturated zone between both SGs. The misfit between the observed gravity time-series and the gravity effect corresponding to local hydrological contribution calculated from global hydrological models can be explained by large lateral fluxes and rapid runoff occurring in the LSBB site. Finally, we implement a rectangular prism method to compute forward gravity responses to water storage changes for a homogeneous water-layer following the site topography using a 5-m digital elevation model. In particular, we analyse the sensitivity of the differential record from both SGs to the extent and depth of the water storage changes by computing the corresponding 2D admittances. This gravity difference is sensitive to an extension up to about 2500 m laterally before tending towards an asymptotic value corresponding to the Bouguer plate approximation. We show that the zone of water-storage changes that best fits observed differential gravity signal is located at depths larger than 500 m (below iOSG24). This fitting is improving when the integration radius increases with depth. This is the first time that hydrological processes are investigated when the baseline configuration of two SGs is vertical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blavoux, B., Mudry, J., & Puig, J. M. (1992). The karst system of the Fontaine de Vaucluse (Southeastern France). Environmental Geology and Water Sciences, 19(3), 215–225.

    Article  Google Scholar 

  • Blondel, T., Emblanch, C., Batiot-Guilhe, C., Dudal, Y., & Boyer, D. (2012). Punctual and continuous estimation of transit time from dissolved organic matter fluorescence properties in karst aquifers, application to groundwaters of ‘Fontaine de Vaucluse’ experimental basin (SE France). Environment and Earth Science, 65, 2299–2309. https://doi.org/10.1007/s12665-012-1562-x

    Article  Google Scholar 

  • Boy, J.-P., Gegout, P., & Hinderer, J. (2002). Reduction of surface gravity data from global atmospheric pressure loading. Geophysical Journal International, 149, 534–545.

    Article  Google Scholar 

  • Boy, J.-P., & Hinderer, J. (2006). Study of the seasonal gravity signal in superconducting gravimeter data. Journal of Geodynamics, 41(1–3), 227–233. https://doi.org/10.1016/j.jog.2005.08.035

    Article  Google Scholar 

  • Calvo, M., Hinderer, J., Rosat, S., Legros, H., Boy, J.-P., Ducarme, B., & Zürn, W. (2014). Time stability of spring and superconducting gravimeters through the analysis of very long gravity record. Journal of Geodynamics, 80, 20–33. https://doi.org/10.1016/j.jog.2014.04.009

    Article  Google Scholar 

  • Carrière, S. D., Chalikakis, K., Danquigny, C., Davi, H., Mazzilli, N., Ollivier, C., & Emblanch, C. (2016). The role of porous matrix in water flow regulation within a karst unsaturated zone: An integrated hydrogeophysical approach. Hydrogeology Journal, 24, 1905–1918.

    Article  Google Scholar 

  • Chaffaut, Q., Hinderer, J., Masson, F., Viville, D., Bernard, J.-D., Cotel, S., Pierret, M.-C., Lesparre, N., & Jeannot, B. (2020). Continuous monitoring with a superconducting gravimeter as a proxy for water storage changes in a mountain catchment. In International Association of Geodesy Symposium, https://doi.org/10.1007/1345_2020_105.

  • Chaffaut, Q., Lesparre, N., Masson, F., Hinderer, J., Viville, D., Bernard, J.-D., Ferhat, G., & Cotel, S. (2022). Hybrid gravimetry to map water storage dynamics in a mountain catchment. Frontiers Water, 3, 715298. https://doi.org/10.3389/frwa.2021.715298

    Article  Google Scholar 

  • Chalikakis, K., Plagnes, V., Guerin, R., Valois, R., & Bosch, F. P. (2011). Contribution of geophysical methods to karst-system exploration: An overview. Hydrogeology Journal, 19(6), 1169–1180.

    Article  Google Scholar 

  • Cognard-Plancq, A. L., Gevaudan, C., & Emblanch, C. (2006). Historical monthly rainfall-runoff database on Fontaine de Vaucluse karst system: Review and lessons. In J. J. Duràn, B. Andreo, & F. Carrasco (Eds.), Karst, cambio climatico y aguas submediterraneas [Karst, climate change and submediterranean waters] (pp. 465–475). Publicaciones del Instituto Geológico y Minero de España.

    Google Scholar 

  • Creutzfeldt, B., Ferre, T., Troch, P., Merz, B., Wziontek, H., & Güntner, A. (2012). Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity measurement. Journal of Geophysics Research. https://doi.org/10.1029/2011JD016472

    Article  Google Scholar 

  • Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics and Space Physics, 10, 761–797.

    Article  Google Scholar 

  • Fores, B., Champollion, C., Le Moigne, N., Bayer, R., & Chéry, J. (2017). Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification. Geophysical Journal International, 208, 269–280. https://doi.org/10.1093/gji/ggw396

    Article  Google Scholar 

  • Forsberg, R. (1984). A study of terrain reductions density anomalies and geophysical inversion methods in gravity field modelling. Ohio State University.

    Book  Google Scholar 

  • Francis, O. (1997). Calibration of the C021 superconducting gravimeter in Membach (Belgium) using 47 days of absolute gravity measurements. International association of geodesy symposia (Vol. 117, pp. 212–219). Springer.

    Google Scholar 

  • Garry, B. (2007). Etude des processus d’écoulement de la zone non saturée pour la modélisation des aquifères karstiques. Expérimentation hydrodynamique et hydrochimique sur les sites du Laboratoire Souterrain à Bas Bruit (LSBB) de Rustrel et de Fontaine de Vaucluse. PhD Thesis, Université d’Avignon et des Pays du Vaucluse, Avignon, France.

  • Garry, B., Blondel, T., Emblanch, C., Sudre, C., Bilgot, S., Cavaillou, A., Boyer, D., & Auguste, M. (2008). Contribution of artificial galleries to knowledge of karstic system behaviour in addition to natural cavern data. International Journal of Speleology, 37(1), 75–82.

    Article  Google Scholar 

  • Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A. M., Takacs, L. L., Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R. H., Wargan, K., Coy, L., Cullather, R. I., Akella, S. R., Bachard, V., Conaty, A. L., da Silva, A., Gu, W., Koster, R. D., … Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version-2 (MERRA-2). Journal of Climate, 30, 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  • Gitlein, O., Timmen, L., & Müller, J. (2013). Modeling of atmospheric gravity effects for high-precision observations. International Journal of Geosciences, 04, 663–671. https://doi.org/10.4236/ijg.2013.44061

    Article  Google Scholar 

  • Goodkind, J. M. (1991). The superconducting gravimeters. Principles of operation, current performance, and future prospects. Proceeding of the workshop won-tidal gravity changes. Intercomparison between absolute and superconducting gravimeters’ (Vol. 3, pp. 81–90). Cahiers du Centre Europeen de Geodynamique et de Seismologie.

    Google Scholar 

  • Güntner, A., Reich, M., Mikolaj, M., Creutzfeld, B., Schroeder, S., & Wziontek, H. (2017). Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure. Hydrology and Earth System Sciences, 21, 3167–3182. https://doi.org/10.5194/hess-21-3167-2017

    Article  Google Scholar 

  • Hartmann, T., & Wenzel, H.-G. (1995). The HW95 tidal potential catalog. Geophysical Research Letters, 22(24), 3553–3556.

    Article  Google Scholar 

  • Hasan, S., Troch, P. A., Bogaart, P. W., & Kroner, C. (2008). Evaluating catchment-scale hydrological modelling by means of terrestrial gravity observations. Water Resources Research. https://doi.org/10.1029/2007WR006321

    Article  Google Scholar 

  • Hector, B., Hinderer, J., Séguis, L., Boy, J.-P., Calvo, M., Descloitres, M., Rosat, S., Galle, S., & Riccardi, U. (2014). Hydro-gravimetry in West-Africa: First results from the Djougou (Benin) superconducting gravimeter. Journal of Geodynamics, 80, 34–49.

    Article  Google Scholar 

  • Hector, B., Séguis, L., Hinderer, J., Descloitres, M., Vouillamoz, J. M., Wubda, M., & Le Moigne, N. (2013). Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: Results from joint absolute gravity, hydrological monitoring and geophysical prospection. Geophysical Journal International, 194(2), 737–750.

    Article  Google Scholar 

  • Hemmings, B., Gottsmann, J., Whitaker, F., & Coco, A. (2016). Investigating hydrological contributions to volcano monitoring signals: A time-lapse gravity example. Geophysical Journal International. https://doi.org/10.1093/gji/ggw266

    Article  Google Scholar 

  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal Royal Meteorological Society, 146, 1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hinderer, J., Crossley, D., & Warburton, R. J. (2007). Superconducting gravimetry. In T. Herring & G. Schubert (Eds.), Superconducting gravimetry in treatise on geophysics. (Geodesy) (Vol. 3, pp. 65–122). Elsevier.

    Chapter  Google Scholar 

  • Hinderer, J., Warburton, R. J., Rosat, S., Riccardi, U., Boy, J.-P., Forster, F., Jousset, P., Güntner, A., Erbas, K., Littel, F., & Bernard, J.-D. (2022). Intercomparing superconducting gravimeter records in a dense meter-scale network at the J9 gravimetric observatory of Strasbourg, France. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-022-03000-4

    Article  Google Scholar 

  • Imanishi, Y., Higashi, T., & Fukuda, Y. (2002). Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeterFG5#210—A Bayesian approach. Geophysical Journal International, 151, 867–878.

    Article  Google Scholar 

  • Imanishi, Y., Kokubo, K., & Tatehata, H. (2006). Effect of underground water on gravity observation Matsushiro, Japan. Journal of Geodynamics, 41, 221–226. https://doi.org/10.1016/j.jog.2005.08.031

    Article  Google Scholar 

  • Jacob, T., Bayer, R., Chery, J., & Le Moigne, N. (2010). Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. Journal of Geophysics Research. https://doi.org/10.1029/2009JB006616

    Article  Google Scholar 

  • Jacob, T., Chery, J., Bayer, R., Moigne, N. L., Boy, J.-P., Vernant, P., & Boudin, F. (2009). Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity. Geophysical Journal International, 177, 347–360. https://doi.org/10.1111/j.1365-246X.2009.04118.x

    Article  Google Scholar 

  • Kazama, T., & Okubo, S. (2009). Hydrological modelling of groundwater disturbances to observed gravity: Theory and application to Asama Volcano, Central Japan. Journal of Geophysical Research, 114, B08402. https://doi.org/10.1029/2009JB006391

    Article  Google Scholar 

  • Kennedy, J., Ferre, T. P. A., Güntner, A., Abe, M., & Creutzfeldt, B. (2014). Direct measurement of subsurface mass change using the variable baseline gravity gradient method. Geophysical Research Letters, 41, 2827–2834.

    Article  Google Scholar 

  • Kroner, C., Jahr, T., Naujoks, M., & Weise, A. (2006). Hydrological signals in gravity—Foe or friend? Dynamic Planet, IAG Symposia Series 130 (pp. 504–510). Springer.

    Google Scholar 

  • Kroner, C., & Weise, A. (2011). Sensitivity of superconducting gravimeters in central Europe on variations in regional river and drainage basins. Journal of Geodesy, 85(10), 651–659. https://doi.org/10.1007/s00190-011-0471-1

    Article  Google Scholar 

  • Leiriao, S., He, X., Christiansen, L., Anderson, O. B., & Bauer-Gottwein, P. (2009). Calculation of the temporal gravity variation from spatially variable water storage change in soils and aquifers. Journal of Hydrology, 365, 302–309.

    Article  Google Scholar 

  • MacMillan, W. D. (1958). The theory of potential. Theoretical mechanics (Vol. 2). New York: Dover.

    Google Scholar 

  • Mangin, A. (1975). Contribution à l’étude hydrodynamique des aquifères karstiques. Ph.D thesis. Université de Dijon, p 124.

  • Masse, J.-P. (1976). Les calcaires urgoniens de Provence, Valanginien—Aptien inférieur, tome 1: Stratigraphie—paléontologie; tome 2: Les paléoenvironnements et leur évolution [Urgonian Limestones of Provence, Valanginian—Lower Aptian, vol 1: stratigraphy—paleontology, vol 2: paleoenvironments and their evolution]. PhD Thesis, Univ. D’Aix-Marseille, Marseille, France, p 445.

  • Masse, J.-P. (1969). Contribution à l’étude de l’Urgonien (Barrémien - Bédoulien) des Monts de vaucluse et du Luberon. [Contribution to the study of the Urgonian (Barremian-Bedoulian) of the Vaucluse and the Luberon mountains] (p. 59). Bureau de Recherches Géologiques et Minières.

    Google Scholar 

  • Masse, J.-P., & Fenerci-Masse, M. (2011). Drowning discontinuities and stratigraphic correlation in platform carbonates: The Late Barremian-Early Aptian record of southeast France. Crétacé Research, 32(6), 659–684.

    Google Scholar 

  • Mouyen, M., Longuevergne, L., Chalikakis, K., Mazzilli, N., Ollivier, C., Rosat, S., Hinderer, J., & Champollion, C. (2019). Monitoring groundwater redistribution in a karst aquifer using a superconducting gravimeter. E3S Web of Conference, 88, 03001. https://doi.org/10.1051/e3sconf/20198803001

    Article  Google Scholar 

  • Naujoks, M., Kroner, C., Weise, A., Jahr, T., Krause, P., & Eisner, S. (2010). Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three-dimensional model. Geophysical Journal International, 182(1), 233–249. https://doi.org/10.1111/j.1365-246X.2010.04615.x

    Article  Google Scholar 

  • Naujoks, M., Weise, A., Kroner, C., & Jahr, T. (2008). Detection of small hydrological variations in gravity by repeated observations with relative gravimeters. Journal of Geodesy, 82(9), 543–553. https://doi.org/10.1007/s00190-007-0202-9

    Article  Google Scholar 

  • Neumeyer, J., Hagedoorn, J., Leitloff, J., & Schmidt, T. (2004). Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements. Journal of Geodynamics, 38, 437–450. https://doi.org/10.1016/j.jog.2004.07.006

    Article  Google Scholar 

  • Pool, D. R., & Eyechaner, J. H. (1995). Measurements of aquifer-storage change and specific yield using gravity surveys. Groundwater, 33, 425–432. https://doi.org/10.1111/j.1745-6584.1995.tb00299.x

    Article  Google Scholar 

  • Puig, J. M. (1987). Le système karstique de la Fontaine de Vaucluse [The karst system of the Fontaine de Vaucluse]. PhD Thesis, Univ. D’Avignon et des Pays de Vaucluse, France, p. 207

  • Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P. P., Koster, R. D., & De Lannoy, G. J. M. (2017a). Assessment of MERRA-2 land surface hydrology estimates. Journal of Climate, 30, 2937–2960. https://doi.org/10.1175/JCLI-D-16-0720.1

    Article  Google Scholar 

  • Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P. P., & Partyka, G. S. (2017b). Land surface precipitation in MERRA-2. Journal of Climate, 30(5), 1643–1664.

    Article  Google Scholar 

  • Rosat, S., Hinderer, J., Boy, J.-P., Littel, F., Bernard, J.-D., Boyer, D., Mémin, A., Rogister, Y., & Gaffet, S. (2018). A two-year analysis of the iOSG24 superconducting gravimeter at the low noise underground laboratory (LSBB URL) of Rustrel, France: Environmental noise estimate. Journal of Geodynamics, 119, 1–8. https://doi.org/10.1016/j.jog.2018.05.009

    Article  Google Scholar 

  • Van Camp, M., & Francis, O. (2007). Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? Journal of Geodesy, 81(5), 337–344. https://doi.org/10.1007/s00190-006-0110-4

    Article  Google Scholar 

  • Van Camp, M., Vanclooster, M., Crommen, O., Petermans, T., Verbeeck, K., Meurers, B., van Dam, T., & Dassargues, A. (2006). Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. Journal of Geophysics Research. https://doi.org/10.1029/2006JB004405

    Article  Google Scholar 

  • Warburton, R. J., Pillai, H., & Reineman, R. C. (2010). Initial results with the new GWR iGravTM superconducting gravity meter. In Extended abstract presented at 2nd Asia workshop on superconducting gravimetry, Taipei, Taiwan.

  • Waysand, G., Gaffet, S., Virieux, J., Chwala, A., Auguste, M., Boyer, D., Cavaillou, A., Guglielmi, Y., Rodrigues, D., Waysand, G., Gaffet, S., Virieux, J., Chwala, A., Auguste, M., Boyer, D., Cavaillou, A., Guglielmi, Y., & Rodrigues, D. (2002). The Laboratoire Souterrain Bas Bruit (lsbb). In Rustrel-pays D’apt (france): A unique opportunity for low-noise underground science, EGSGA, 3869, https://ui.adsabs.harvard.edu/abs/2002EGSGA..27.3869W/abstract

  • Wenzel, H.-G. (1996). The nanogal software: Earth tide data processing package ETERNA 3.30. Bulletin Information Marées Terrestres, 124, 9425–9439.

    Google Scholar 

  • Wilson, C. R., Scanlon, B., Sharp, J., Longuevergne, L., & Wu, H. (2011). Field test of the superconducting gravimeter as a hydrologic sensor. Groundwater, 50, 442–449. https://doi.org/10.1111/j.1745-6584.2011.00864.x

    Article  Google Scholar 

Download references

Acknowledgements

Surface loading models based on MERRA2 and ERA5 are available through the EOST loading service (http://loading.ustrasbg.fr). S.R. thanks N. Mazzilli (University of Avignon, France) for some discussions on this work. We are grateful to F. Littel, D. Boyer, J.-B. Decitre and S. Gaffet for installing and maintaining the SGs at the LSBB site. The digital elevation model provided by the “Institut national de l'information géographique et forestière” (IGN-F) was downloaded from https://geoservices.ign.fr/rgealti

Funding

iGrav31 was funded by EQUIPEX CRITEX (Study of the critical zone) ANR-11-EQPX-0011 (https://www.critex.fr). iOSG24 was funded by the EQUIPEX MIGA (Matter wave-laser based Interferometer Gravitation Antenna) ANR-11-EQPX-0028 (http://miga-project.org) and by the European FEDER 2006–2013 “PFM LSBB—Développement des qualités environnementales du LSBB”.

Author information

Authors and Affiliations

Authors

Contributions

JH and SR contributed to the study conception and design. Material preparation, data collection and analysis were performed by SK and SR. The first draft of the manuscript was written by SK and SR. Major revisions were handled by SR. All authors commented on and corrected previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Rosat.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Rosat, S., Hinderer, J. et al. Delineation of Aquifer Boundary by Two Vertical Superconducting Gravimeters in a Karst Hydrosystem, France. Pure Appl. Geophys. 180, 611–628 (2023). https://doi.org/10.1007/s00024-022-03186-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03186-7

Keywords

Navigation