Skip to main content
Log in

Probabilistic Seismic Hazard Assessment of Pakistan Territory Using an Areal Source Model

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A seismic hazard map for the national seismic design code of Pakistan (i.e., Building Code of Pakistan) is derived using probabilistic seismic hazard assessment (PSHA) approach. In order to update the seismic code, an updated seismic zoning map is required that should be based on usage of the recent seismic hazard elements. PSHA of Pakistan is an essential and important milestone. For this purpose, the standard Cornell–McGuire (1968–1976) approach is employed, and the computations are made over a rectangular grid of 0.1°. The main features of this study include usage of a recently compiled earthquake catalogue, recent ground motion prediction equations and an updated seismic source model. The resulting ground motions are obtained as peak ground acceleration (PGA) and 5% damped spectral acceleration (SA) at T = 0.2 s and T = 1.0 s for 475-, 975- and 2475-year return periods (RPs) (evaluated for the flat rock site conditions). Results of the study show that seismic hazard in Pakistan is highest in its central and northern parts. In the central part near Quetta, severe seismic hazard (PGA 0.40 g) is observed. Among the important cities in Pakistan, Balakot city is likely to experience a PGA value of 0.36 g, while Islamabad, Peshawar and Chitral are likely to experience 0.33 g. The cities of Gilgit, Karachi and Gwadar experience ground motion values of 0.34, 0.26 and 0.29 g, respectively, for the 475-year return period (RP). It has also been observed that ground motion values show variation in the distribution and magnitude in contrast to the hazard map of national design code. The hazard map presented in this study is the improved seismic hazard zoning map of Pakistan that would be helpful in developing pre-disaster mitigation strategies and risk assessment studies in Pakistan. It is concluded that the seismic zoning map of the national seismic design code of Pakistan underestimates the ground motion values, and it should be updated or replaced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • AASHTO-LRFD. (2012). Bridge design specifications. Washington, D.C.: American Association of State Highway and Transportation Officials.

    Google Scholar 

  • Ader, et al. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal Of Geophysical Research, 117, 1–16.

    Google Scholar 

  • Akkar, S., & Bommer, J. J. (2010). Empirical equation for prediction of PGA, PGV, and spectral acceleration in Europe, the Mediterranean region, and the Middle East. Seismological Research Letters, 8(2), 195–206.

    Google Scholar 

  • Akkar, S., Sandıkkaya, M. A., & Bommer, J. J. (2014). Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12, 359–387.

    Google Scholar 

  • Ambraseys, N. (2000). Reappraisal of north-Indian earthquakes at the turn of the 20th century. Current Science (special edition), 79(09), 1237–1250.

    Google Scholar 

  • Ambraseys, N., & Bilham, R. (2003). Earthquakes in Afghanistan. Seismological Research Letters, 74, 107–123.

    Google Scholar 

  • Ambraseys, N., & Bilham, R. (2009), The tectonic setting of Bamiyan and seismicity in and near Afghanistan for the past twelve centuries. In Margottini C (ed) UNESCO special publication: The destruction of the Giant Buddha statues in Bamiyan, Central Afghanistan, UNESCO’s emergency activities for the recovering and rehabilitation of cliff and niches, vol. 158, pp. 67–94 (ISBN 978-448-0375-5).

  • Ambraseys, N., & Douglas, J. J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159, 165–206.

    Google Scholar 

  • Apel, E., Burgmann, R., & Nagarajan, B. (2006). Geodetically constrained Indian plate motion and implications for plate boundary deformation. Eos, Transactions, American Geophysical Union 85, 52 T51B-1524 Fall meeting supplement.

  • Baig, M. S., & Lawrence, R. D. (1987). Precambrian to early Paleozoic orogenesis in the Himalaya. Kashmir Journal of Geology, 5, 1–22.

    Google Scholar 

  • Bilham, R. (1999). Slip parameters for the Rann of Kachchh, India, 16 June 1819, earthquake, quantified from contemporary accounts. In I. S. Stewart & C. Vita-Finzi (Eds.), Coastal tectonics (Vol. 146, pp. 295–318). London: Geological Society.

    Google Scholar 

  • Bilham, R., & Ambraseys, N. (2005). Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Current Science, 88(10), 1658–1663.

    Google Scholar 

  • Bilham, R., Lodhi, S., Hough, S., Bukhary, S., Khan, M. A., & Rafeeqi, S. F. A. (2007). Seismic hazard in Karachi, Pakistan: Uncertain past, uncertain future. Seismological Research Letters, 78(6), 601–613.

    Google Scholar 

  • Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., Faeh, D., et al. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 81, 783–793.

    Google Scholar 

  • Boore, M. D., Stewart, P. J., Jonathan, P., Seyhan, E., & Gail, M. A. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085.

    Google Scholar 

  • Building Code of Pakistan: Seismic Provisions (2007) Ministry of Housing and Society, Government of Pakistan.

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of Seismological Society of America, 58(05), 1583–1606.

    Google Scholar 

  • Cotton, F., Scherbaum, F., Bommer, J. J., & Begum, H. (2006). Criteria for selecting and adjusting ground-motion models for adjusting for specific target regions: Applications to central Europe and rock sites. Journal of Seismology, 10, 137.

    Google Scholar 

  • Desio, A. (1963). Review of the geologic “formations” of the western Karakorum (central Asia). Rivista Italiana di Paleontologia e Stratigrafia, 69, 475–501.

    Google Scholar 

  • EZ-FRISK software for earthquake ground motion estimation, version 7.62. Risk Engineering, Inc, USA.

  • Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seismological Research Letters, 66(4), 8–21.

    Google Scholar 

  • Fukushima, Y., & Tanaka, T. (1990). A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan. Bulletin of Seismological Society of America, 80, 757–783.

    Google Scholar 

  • Gansser, A. (1981). The geodynamic history of the Himalaya. In H. K. Gupta & F. M. Delany (Eds.), Zagros, Hindu Kush, Himalaya: Geodynamic evolution (pp. 111–121). Washington: AGU.

    Google Scholar 

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of Seismological Society of America, 64(5), 1363–1367.

    Google Scholar 

  • Gulan, L., & EMME WP 2 Team. (2014). Earthquake Model of the Middle East (EMME) project. Active faults and seismic sources, Second European conference on Earthquake Engineering and Seismology, Istanbul, August 25–29.

  • Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration (second paper). Bulletin of Seismological Society of America, 46(2), 105–145.

    Google Scholar 

  • Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., Yalciner, A. C., Mokhtari, M., & Esmaeily, A. (2008). Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering, 35, 774–786.

    Google Scholar 

  • IBC. (2015). International Building Code, International Code Council (ICC), ICC 700.

  • Joyner, W. B., & Boore, D. M. (1981). Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bulletin of Seismological Society of America, 71(6), 2011–2038.

    Google Scholar 

  • Kanno, T., Akria, N., Morikawa, N., Fujiwara, H., & Fukushima, Y. (2006). A new attenuation for strong ground motion in Japan based on recorded data. Bulletin of Seismological Society of America, 96(3), 879–897.

    Google Scholar 

  • Khan, S., Waseem, M., Khan, M. A., & Ahmed, W. (2018). Updated earthquake catalogue for seismic hazard analysis for Pakistan. Journal of Seismology. https://doi.org/10.1007/s10950-018-9736-y.

    Article  Google Scholar 

  • Kramer, S. L. (1996). Geotechnical earthquake engineering. New Jersey: Prentice-Hall.

    Google Scholar 

  • Lawrence, R. D., Khan, S. H., & Nakata, T. (1992). Chaman fault, Pakistan–Afghanistan. In R. C. Bucknam, P. L. Hancock (Eds.) Major active faults of the world—Results of IGCP project 206: Annnales Tectonicae, Supplement to v6, 196–223.

  • Martin, S., & Szeliga, W. (2010). A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bulletin of Seismological Society of America, 100, 562–569.

    Google Scholar 

  • McGuire, R. K. (1976). FORTRAN computer program for seismic risk analysis (pp. 76–6768). Open file Report: United States Geological Survey.

    Google Scholar 

  • Mukhopadhyay, B., & Dasgupta, S. (2015). Seismic hazard assessment of Kashmir and Kangra valley region, Western Himalaya, India. Geomatics, Natural Hazards and Risk, 6(2), 149–183.

    Google Scholar 

  • Mulargia, F., & Tinti, S. (1985). Completeness analysis of a seismic catalogue. Annals Geophysics, 3(3), 407–414.

    Google Scholar 

  • Nath, S. K., & Thingbaijam, K. K. S. (2012). Probabilistic seismic hazard assessment of India. Seismological Society of America, 83(1), 135–149.

    Google Scholar 

  • Oldham, T. (1883). A catalogue of Indian earthquakes from the earliest times to the end of 1869 A.D. Memoirs of the Geological Survey of India, 19(3), 163–215.

    Google Scholar 

  • Quittmeyer, R., & Jacob, K. (1979). Historical and modern seismicity of Pakistan, Afghanistan, northwestern India, and south eastern Iran. Bulletin of Seismological Society of America, 69(3), 773–823.

    Google Scholar 

  • Rafi, Z., Lindholm, C., Bungum, H., Laghari, A., & Ahmed, N. (2012). Probabilistic seismic hazard map of Pakistan, Azad Jammu and Kashmir. Natural Hazards, 61(3), 1317–1354.

    Google Scholar 

  • Rahman, M. M., & Bai, L. (2018). Probabilistic seismic hazard assessment of Nepal using multiple source models. Earth and Planetary Physics, 2, 327–341.

    Google Scholar 

  • Rahman, M. M., Bai, L., Khan, N. G., & Li, G. (2017). Probabilistic seismic hazard assessment of Himalayan–Tibetan region from historical and instrumental earthquake catalogs. Pure and Applied Geophysics, 175, 685–705.

    Google Scholar 

  • Sawires, R., Pelaez, J. A., Fat-Hebary, R. E. F., & Ibrahim, A. A. (2016). Updated probabilistic seismic hazard values for Egypt. Bulletin of Seismological Society of America, 106(04), 1788–1801.

    Google Scholar 

  • Sesetyan, K., Demircioglu, B. M., Duman, Y. T., Can, T., Tekin, S., Azak, E. T., et al. (2018a). A probabilistic seismic hazard assessment of the Turkish territory—part I: the area source model. Bulletin of Earthquake Engineering, 16(1), 3367–3397.

    Google Scholar 

  • Sesetyan, et al. (2018b). The 2014 seismic hazard model of Middle East: Overview and results. Bulletin of Earthquake Engineering, 16(08), 3535–3566.

    Google Scholar 

  • Shah, M. A., Iqbal, T., Qaiser, M., Ahmed, N., & Tufail, M. (2012). Development of attenuation relationship for northern Pakistan. In The 15th world conference on earthquake engineering, Lisbon, Portugal.

  • Shedlock, K. M., Giardini, D., Grunthal, G., & Zhang, P. (2000). The GSHAP global seismic hazard map. Seismological Research Letters, 71(6), 679–686.

    Google Scholar 

  • Stepp, J. C. (1973). Analysis of completeness of earthquake sample in the Punget Sound area in seismic zoning. In Harding, S. T. (Ed.) NOAA Technical Report ERL 267-ESL 30, Boulder, Colorado.

  • Stevens, V. L., & Avouac, J. P. (2015). Interseismic coupling on the main Himalayan thrust. Geophysical Research Letters, 20, 5828–5837.

    Google Scholar 

  • Styron, R., Taylor, M., & Okoronkwo, K. (2010). HimaTibetMap-1.0: New ‘web-2.0’ online database of active structures from the Indo-Asian collision. Eos, 91, 20. https://github.com/HimaTibetMap/HimaTibetMap.

  • Taylor, M., & Yin, A. (2009). Active structures of the Himalayan–Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 05(03), 199–214. https://github.com/HimaTibetMap/HimaTibetMap.

  • Uniform Building Code (UBC). (1997). ICBO international conference of building officials, structural engineering design provisions (Vol. 2). Whittier: Uniform Building Code.

    Google Scholar 

  • Waseem, M., Khan, M. A., & Sarfraz, K. (2019). Seismic sources for Pakistan and seismic hazard analysis of Karachi. Natural Hazards, 99(1), 511–536.

    Google Scholar 

  • Waseem, M., Lai, G. C., & Spacone, E. (2018a). Seismic hazard assessment of northern Pakistan. Natural Hazards, 90(2), 563–600.

    Google Scholar 

  • Waseem, M., Lateef, A., Ahmad, I., et al. (2018b). Seismic hazard assessment of Afghanistan. Journal of Seismology. https://doi.org/10.1007/s10950-018-9802-5.

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72, 373–382.

    Google Scholar 

  • Woo, G. (1996). Kernel estimation methods for seismic hazard area source modelling. Bulletin of the Seismological Society of America, 88, 353–362.

    Google Scholar 

  • Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58–73.

    Google Scholar 

  • Zaman, S., Ornthammarath, T., & Warnitchai, P. (2012). Probabilistic seismic hazard maps for Pakistan. In The 15th world conference on earthquake engineering, Lisbon, Portugal.

  • Zhang, P., Yang, Z., Gupta, K. H., Bhatia, C. S., & Shedlock, M. K. (1999). Global seismic hazard assessment program (GSHAP) in continental Asia. Annali di Geofisica, 42(06), 1167–1190.

    Google Scholar 

  • Zhao, X. J., Zhang, et al. (2006). Attenuation relations for strong ground motion in Japan using site classification based on predominant period. Bulletin of Seismological Society of America, 3, 898–913.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge facilities and the financial support in the purchase of the EZ-FRISK software provided by the National Centre of Excellence in Geology, University of Peshawar, Pakistan, and the EZ-FRISK software, version 7.62, developed for earthquake ground motion prediction. Additionally, the comments and recommendations of the editor and of the anonymous reviewers of the paper are gratefully acknowledged for their constructive review, improving the quality of the article. The various online earthquake data agencies from which data was collected for the earthquake catalogue are acknowledged, including the International Seismological Centre (ISC), National Earthquake Information Center (NEIC), National Geophysical Data Center (NGDC), World Data Centre (WDCse), India Meteorological Department (IMD), Pakistan Meteorological Department (PMD), Micro Seismic Studies Program (MSSP), seismic stations of Mangla and Tarbela dams and the Water and Power Development Authority (WAPDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Waseem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waseem, M., Khan, S. & Asif Khan, M. Probabilistic Seismic Hazard Assessment of Pakistan Territory Using an Areal Source Model. Pure Appl. Geophys. 177, 3577–3597 (2020). https://doi.org/10.1007/s00024-020-02455-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02455-7

Keywords

Navigation