Skip to main content
Log in

Temporal Variation of Soil Gas Radon Associated with Seismic Activity: A Case Study in NW Greece

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Soil gas radon concentrations were continuously monitored from November 2016 to May 2018, close to an active fault zone in the area of Ioannina (Northwestern Greece) that gave rise to intense seismic swarms with magnitudes up to 5.3 on the Richter scale, during October 2016. Meteorologic parameters (soil and air temperature, atmospheric pressure, wind speed and rainfall) were simultaneously obtained, and their contribution to radon fluctuations was examined by partial correlation and cross-correlation analysis. Soil temperature and atmospheric pressure were found to be the parameters controlling radon concentrations, and their effect was reduced using multiple linear regression analysis. During the monitoring period, 11 spike-like anomalies were identified in the residual radon time series using the 2σ deviation criterion. The duration of the anomalies varied from < 1 day to approximately 5 days. Earthquakes of local magnitudes ML > 2.5, occurring within a distance of 100 km from the monitoring site, were collected and filtered by applying Dobrovolsky’s radius approach. Most of the observed radon anomalies were likely associated with seismic events, and the precursor time ranged roughly from 2 to 15 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arora, B. R., Kumar, A., Walia, V., Yang, T. F., Fu, C.-C., Liu, T.-K., et al. (2017). Assesment of the response of the meteorological/hydrological parameters on the soil gas radon emission at Hsinchu, northern Taiwan: A prerequisite to identify earthquake precursors. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2017.06.033.

    Article  Google Scholar 

  • Aubouin, J. (1959). Contribution à l’étude géologique de la Grèce, septentrionale: les confins de l’ Epire et de la Thessalie. Annales Géologiques des Pays Helléniques,10, 1–483.

    Google Scholar 

  • Aumento, F. (2002). Radon tides on an active volcanic island: Terceira, Azores. Geofísica Internacional,41(4), 499–505.

    Google Scholar 

  • Barkat, A., Ali, A., Hayat, U., Crowley, Q. G., Rehman, K., Siddique, N., et al. (2018). Time series analysis of soil radon in Northern Pakistan: Implications for earthquake forecasting. Applied Geochemistry,97, 197–208.

    Google Scholar 

  • Boccaletti, M., Caputo, R., Mountrakis, D., Pavlides, S., & Zouros, N. (1997). Paleoseismicity of the Souli fault, Epirus, Western Greece. Journal of Geodynamics,24, 117–127.

    Google Scholar 

  • Cicerone, R. D., Ebel, J. E., & Britton, J. (2009). A systematic compilation of earthquake precursors. Tectonophysics,476(3–4), 371–396.

    Google Scholar 

  • Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics,117(5), 1025–1044.

    Google Scholar 

  • Etiope, G., & Martinelli, G. (2002). Migration of carrier and trace gases in the geosphere: an overview. Physics of the Earth and Planetary Interiors,129(3–4), 185–204.

    Google Scholar 

  • Fleischer, R. L. (1981). Dislocation model for radon response to distant earthquakes. Geophysical Research Letters,8(5), 477–480.

    Google Scholar 

  • Friedmann, H. (2012). Radon in earthquake prediction research. Radiation Protection Dosimetry,149(2), 177–184.

    Google Scholar 

  • Fu, C.-C., Walia, V., Yang, T. F., Lee, L.-C., Liu, T.-K., Chen, C.-H., et al. (2017a). Preseismic anomalies in soil-gas radon associated with 2016 M6.6 Meinong earthquake, Southern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences,28(5), 787–798.

    Google Scholar 

  • Fu, C.-C., Yang, T. F., Chen, C.-H., Lee, L.-C., Wub, Y.-M., Liu, T.-K., et al. (2017b). Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications. Journal of Asian Earth Sciences,149, 64–77.

    Google Scholar 

  • Fu, C.-C., Yang, T. F., Tsai, M. C., Lee, L. C., Liu, T. K., Walia, V., et al. (2017c). Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan. Chemical Geology,469, 163–175.

    Google Scholar 

  • Fu, C.-C., Yang, T. F., Walia, V., Liu, T.-K., Lin, S. J., Chen, C.-H., et al. (2009). Variations of soil–gas composition around the active Chihshang fault in a plate suture zone, eastern Taiwan. Radiation Measurements,44(9–10), 940–944.

    Google Scholar 

  • Ghosh, D., Deb, A., Sahoo, S. R., Subrata, H., & Rosalima, S. (2011). Radon as seismic precursor: new data with well water of Jalpaiguri, India. Natural Hazards,58(3), 877–889.

    Google Scholar 

  • Ghosh, D., Deb, A., & Sengupta, R. (2009). Anomalous radon emission as precursor of earthquake. Journal of Applied Geophysics,69(2), 67–81.

    Google Scholar 

  • Gregorič, A., Zmazek, B., Dzeroski, S., Torkar, D., & Vaupotič, J. (2012). Radon as an earthquake precursor: methods for detecting anomalies. In S. D’Amico (Ed.), Earthquake research and analysis: Statistical studies, observations and planning (pp. 179–196). Rijeca: InTech. (ISBN: 978-953-51-0134-5).

    Google Scholar 

  • Hartmann, J., & Levy, J. K. (2005). Hydrogeological and gasgeochemical earthquake precursors—A review for application. Natural Hazards,34(3), 279–304.

    Google Scholar 

  • Hatzfeld, D., Kassaras, I., Panagiotopoulos, D., Amorese, D., Makropoulos, K., Karakaisis, G., et al. (1995). Microseismicity and strain pattern in northwestern Greece. Tectonics,14(4), 773–785.

    Google Scholar 

  • Hauksson, E. (1981). Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. Journal of Geophysical Research,86(B10), 9397–9410.

    Google Scholar 

  • Hauksson, E., & Goddard, J. G. (1981). Radon earthquake precursor studies in Iceland. Journal of Geophysical Research,86(B8), 7037–7054.

    Google Scholar 

  • Igarashi, G., & Wakita, H. (1990). Groundwater radon anomalies associated with earthquakes. Tectonophysics,180(2–4), 237–254.

    Google Scholar 

  • Immè, G., & Morelli, D. (2012). Radon as earthquake precursor. In S. D’Amico (Ed.), Earthquake research and analysis: Statistical studies, observations and planning (pp. 143–160). Rijeca: InTech. (ISBN: 978-953-51-0134-5).

    Google Scholar 

  • Jaishi, H. P., Singh, S., Tiwari, R. P., & Tiwari, R. C. (2014). Analysis of soil radon data in earthquake precursory studies. Annals of Geophysics,57(5), S0544. https://doi.org/10.4401/ag-6513.

    Article  Google Scholar 

  • Karakitsios, V. (2005). The Ioannina karstic plateau and its water management. In Proceedings of the 7th Hellenic Hydrogeological Conference, Athens, 2005 (pp. 171–181) (in Greek). https://doi.org/10.13140/2.1.4464.0009.

  • King, C. Y. (1986). Gas geochemistry applied to earthquake prediction. An overview. Journal of Geophysical Research,91(B12), 12269–12281.

    Google Scholar 

  • King, G., Sturdy, D., & Whitney, J. (1993). The landscape geometry and active tectonics of northwest Greece. Geological Society of America Bulletin,105(2), 137–161.

    Google Scholar 

  • Kristiansson, K., & Malmqvist, L. (1982). Evidence for nondiffusive transport of 222Rn in the ground and a new physical model for the transport. Geophysics,47(10), 1444–1452.

    Google Scholar 

  • Kumar, A., Walia, V., Arora, B., Yang, T., Lin, S.-J., Fu, C.-C., et al. (2015). Identifications and removal of diurnal and semidiurnal variations in radon time series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Natural Hazards,79(1), 317–330.

    Google Scholar 

  • Lindmark, A., & Rosen, B. (1985). Radon in soil gas—Exhalation tests and in situ measurements. The Science of the Total Environment,45, 397–404.

    Google Scholar 

  • Matsumoto, N. (1992). Regression analysis of anomalous changes of ground water level due to earthquakes. Geophysical Research Letters,19(12), 1193–1196.

    Google Scholar 

  • Megumi, K., & Mamuro, T. (1973). Radon and thoron exhalation from the ground. Journal of Geophysical Research,78(11), 1804–1808.

    Google Scholar 

  • Mentes, G., & Eper-Pápai, I. (2015). Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary. Journal of Environmental Radioactivity,149, 64–72.

    Google Scholar 

  • Műllerová, M., Holý, K., & Bulko, M. (2014). Daily and seasonal variations in radon activity concentration in the soil air. Radiation Protection Dosimetry,160(1–3), 222–225.

    Google Scholar 

  • Negarestani, A., Setayeshi, S., Ghannadi-Maragheh, M., & Akashe, B. (2003). Estimation of the radon concentration in soil related to the environmental parameters by a modified Adaline neural network. Applied Radiation and Isotopes,58(2), 269–273.

    Google Scholar 

  • Ntokos, D. (2017a). Neotectonic—Geomorphological study of Epirus, Northwestern Greece and Compiling of Neotectonic Map, by use of Geographic Information Systems, Ph.D. Thesis, National Technical University of Athens, (in Greek). http://dspace.lib.ntua.gr/handle/123456789/44623.

  • Ntokos, D. (2017b). Synthesis of literature and field work data leading to the compilation of a new geological map—A review of geology of northwestern Greece. International Journal of Geosciences,8(2), 205–236.

    Google Scholar 

  • Ntokos, D. (2018). Neotectonic study of Northwestern Greece. Journal of Maps,14(2), 178–188.

    Google Scholar 

  • Oh, Y. H., & Kim, G. (2015). A radon-thoron isotope pair as a reliable earthquake precursor. Scientific Reports,5, 13084. https://doi.org/10.1038/srep13084.

    Article  Google Scholar 

  • Papazachos, B., & Papazachou, K. (1989). The earthquakes of Greece. Thessaloniki: Ziti editions. (in Greek).

    Google Scholar 

  • Pavlides, S., Ganas A., Chatzipetros, A., Sboras, S., Valkaniotis, S., Papathanasiou, G., et al. (2017). Geological and seismotectonic characteristics of the broader area of the October 15, 2016, earthquake (Ioannina, Greece). Geophysical Research Abstracts, 19, EGU2017-18135-1, EGU General Assembly.

  • Pavlides, S., Ganas, A., Papathanasiou, G., Valkaniotis, S., Thomaidou, E., Georgiadis, G., et al. (2016). Geological-seismotectonic study of the wider area of Ioannina (seismic region of the earthquake October 15, 2016). Tectonics & Structural Geology Committee of the Geological Society of Greece. 1st Tectonics and Structural Geology Meeting, Athens 6 December 2016. Available online at: http://www.geosociety.gr/images/ImeridaTektonikis_2016/1st_TSG_Meeting_Proceedings_small.pdf. Accessed 17 April 2018.

  • Pavlides, S., Valkaniotis, S., & Chatzipetros, A. (2008). Seismically capable faults in Greece and their use in seismic hazard assessment. In 4th International Conference on Earthquake Geotechnical Engineering, 25–28 June 2007, Thessaloniki, Proceedings, paper n. 1609.

  • Petraki, E., Nikolopoulos, D., Panagiotaras, D., Cantzos, D., Yannakopoulos, P., et al. (2015). Radon-222: A potential short-term earthquake precursor. Journal of Earth Science and Climatic Change,6, 282. https://doi.org/10.4172/2157-7617.1000282.

    Article  Google Scholar 

  • Piersanti, A., Cannelli, V., & Galli, G. (2016). The Pollino 2012 seismic sequence: clues from continuous radon monitoring. Solid Earth,7, 1303–1316.

    Google Scholar 

  • Ramola, R. C., Prasad, Y., Prasad, G., Kumar, S., & Choubey, V. M. (2008). Soil–gas radon as seismotectonic indicator in Garhwal Himalaya. Applied Radiation and Isotopes,66(10), 1523–1530.

    Google Scholar 

  • Richon, P., Perrier, F., Pili, E., & Sabroux, J.-C. (2009). Detectability and significance of 12 h barometric tide in radon-222 signal, dripwater flow rate, air temperature and carbon dioxide concentration in an underground tunnel. Geophysical Journal International,176(3), 683–694.

    Google Scholar 

  • Riggio, A., & Santulin, M. (2015). Earthquake forecasting: a review of radon as seismic precursor. Bollettino di Geofisica Teorica ed Applicata,56(2), 95–114.

    Google Scholar 

  • Schumann, R. R., Gundersen, L. C. S., & Tanner, A. B. (1994). Geology and occurrence of radon. In N. L. Nagda (Ed.), Radon: Prevalence, measurements, health risks and control, ASTM Manual Series: MNL 15 (pp. 83–96). Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • Schumann, R. R., Owen, D. E., & Asher-Bolinder, S. (1989). Weather factors affecting soil–gas radon concentrations at a single site in the semiarid western US. In Proceedings of the 1988 EPA Symposium on Radon and Radon Reduction Technology, Vol. 2, Publication EPA/600/9-89/006B (pp. 3.1–3.13).

  • Sikder, I. U., & Munakata, T. (2009). Application of rough set and decision tree for characterization of premonitory factors of low seismic activity. Expert Systems with Applications,36(1), 102–110.

    Google Scholar 

  • Singh, M., Ramola, R. C., Singh, S., & Virk, H. S. (1988). The influence of meteorological parameters on soil–gas radon. Journal of Association of Exploration Geophysicists,9(2), 85–90.

    Google Scholar 

  • Tanner, A. B. (1964). Radon migration in the ground: A review. In J. A. S. Adams & W. M. Lowder (Eds.), The natural radiation environment (pp. 161–190). Chicago: University of Chicago Press.

    Google Scholar 

  • Tomer, A. (2016). Radon as an earthquake precursor: A review. International Journal of Science, Engineering and Technology,4(6), 815–822.

    Google Scholar 

  • Torkar, D., Zmazek, B., Vaupotič, J., & Kobal, I. (2010). Application of artificial neural networks in simulating radon levels in soil gas. Chemical Geology,270(1–4), 1–8.

    Google Scholar 

  • Toutain, J.-P., & Baubron, J.-C. (1999). Gas geochemistry and seismotectonics: A review. Tectonophysics,304(1–2), 1–27.

    Google Scholar 

  • Tselentis, G.-A., Sokos, E., Martakis, N., & Serpetsidaki, A. (2006). Seismicity and seismotectonics in Epirus, Western Greece: Results from a microearthquake survey. Bulletin of the Seismological Society of America,96(5), 1706–1717.

    Google Scholar 

  • Vaupotic, J., Riggio, A., Santulin, M., Zmazek, B., & Kobal, I. (2010). A radon anomaly in soil gas at Cazzaso, NE Italy, as a precursor of an ML = 5.1 earthquake. Nukleonika,55(4), 507–511.

    Google Scholar 

  • Virk, H. S., Sharma, A. K., & Sharma, N. (2002). Radon and helium monitoring in some thermal springs of North India and Bhutan. Current Science,82(12), 1423–1424.

    Google Scholar 

  • Walia, V., Yang, T. F., Lin, S. J., Hong, W. L., Fu, C. C., Wen, K. L., et al. (2009). Continuous temporal soil gas composition variations for earthquake precursory studies along Hsincheng and Hsinhua faults in Taiwan. Radiation Measurements,44(9–10), 934–939.

    Google Scholar 

  • Walia, V., Yang, T. F., Lin, S. J., Kumar, A., Fu, C. C., Chiu, J. M., et al. (2013). Temporal variation of soil gas compositions for earthquake surveillance in Taiwan. Radiation Measurements,50, 154–159.

    Google Scholar 

  • Woith, H. (2015). Radon earthquake precursor: A short review. European Physical Journal Special Topics,224(4), 611–627.

    Google Scholar 

  • Zmazek, B., Todorovski, L., Džeroski, S., Vaupotič, J., & Kobal, I. (2003). Application of decision trees to the analysis of soil radon data for earthquake prediction. Applied Radiation and Isotopes,58(6), 697–706.

    Google Scholar 

  • Zmazek, B., Živčić, M., Todorovski, L., Džeroski, S., Vaupotič, J., & Kobal, I. (2005). Radon in soil gas: How to identify anomalies caused by earthquakes. Applied Geochemistry,20(6), 1106–1119.

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the two anonymous reviewers for their valuable comments and suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Papachristodoulou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papachristodoulou, C., Stamoulis, K. & Ioannides, K. Temporal Variation of Soil Gas Radon Associated with Seismic Activity: A Case Study in NW Greece. Pure Appl. Geophys. 177, 821–836 (2020). https://doi.org/10.1007/s00024-019-02339-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02339-5

Keywords

Navigation