Skip to main content
Log in

3D Numerical Simulation of Elastic Wave Propagation in Discrete Fracture Network Rocks

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Fractures play an important role in controlling rock block stability and the hydraulic properties of fractured rock formations. Understanding elastic wave propagation in fractured media can result in significant advances for the geophysical prediction of fracture parameters from seismic data. However, most natural fracture characteristics, such as fracture length, aperture, angle and location are random; therefore, fracture models must be built discretely and follow some stochastic principles. We construct stochastic models of fractured rock samples using a random fracture network rather than a single fracture. Three-dimensional (3D) wave field computation is a computationally complex problem. Here, the 3D fourth-order in space, second-order in time, displacement-stress staggered-grid finite-difference scheme is used for accurate simulations. Our numerical examples demonstrate the effects of varying fracture number, aperture, and length distribution of the fracture network on the seismic response. The wave field scattering caused by the contrast between fractures and background media is one of the key features, and the resulting scattering is more obvious for S-waves than for P-waves. Such an approach can be applied to any fracture network model that provides a link between fracture parameters and seismic attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Acknowledgements

This research is supported by “the Fundamental Research Funds for the Central Universities” (2018ZDPY08) and the National Science Foundation of China (NSFC grant no. 41474122). We would like to thank Dr. Younes Fadakar Alghalandis for providing ADFNE software for discrete fracture modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Song, L. & Liu, L. 3D Numerical Simulation of Elastic Wave Propagation in Discrete Fracture Network Rocks. Pure Appl. Geophys. 176, 5377–5390 (2019). https://doi.org/10.1007/s00024-019-02287-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02287-0

Keywords

Navigation