Skip to main content
Log in

3-D Adaptive Finite-Element Modeling of Marine Controlled-Source Electromagnetics with Seafloor Topography Based on Secondary Potentials

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a solution of using adaptive nodal finite-element (FE) method to solve the marine controlled-source electromagnetic (CSEM) problem for 3-D earth models in the frequency domain. The forward problem is solved based on the secondary Coulomb-gauged electromagnetic (EM) potentials. We implement an adaptive mesh refinement algorithm according to an a posteriori error estimator based on a gradient-recovery operator of the secondary EM potentials. To increase the quality of the mesh at the receiver locations, the elements containing the receiver locations are constrained by assigning them a maximum volume for the initial mesh. An unstructured tetrahedral mesh used in our approach can provide an accurate description of complex structures such as dipping layers and rough topography that are not accurately fitted using structured meshes. We first validate the adaptive FE approach and demonstrate the convergence of the adaptive grid refinement procedure using a 1-D layered model. The canonical disc model example illustrates the capability of the adaptive FE approach for 3-D CSEM modeling. The bathymetry model shows that the algorithm is well suited to deal with complex seafloor topography, which needs to be simulated exactly to avoid the misinterpretation of marine CSEM data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abubakar, A., Habashy, T. M., Druskin, V. L., Knizhnerman, L., & Alumbaugh, D. (2008). 2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements. Geophysics, 73(4), F165–F177.

    Article  Google Scholar 

  • Ansari, S., Farquharson, C. G., & MacLachlan, S. P. (2017). A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems. Geophysical Journal International, 210, 105–129.

    Article  Google Scholar 

  • Avdeev, D. B. (2005). Three-dimensional electromagnetic modeling and inversion from theory to application. Surveys In Geophysics, 26(6), 767–799.

    Article  Google Scholar 

  • Badea, E. A., Everett, M. E., Newman, G. A., & Biro, O. (2001). Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66(3), 786–799.

    Article  Google Scholar 

  • Bank, R. E., & Xu, J. C. (2003). Asymptotically exact a posteriori error estimators, Part II: general unstructured grids. SIAM Journal on Numerical Analysis, 41, 2313–2332.

    Article  Google Scholar 

  • Börner, R. U. (2010). Numerical modeling in geo-electromagnetics: Advances and challenges. Surveys In Geophysics, 31(2), 225–245.

    Article  Google Scholar 

  • Chen, G., Wang, H., Yao, J., & Han, Z. (2009). Three-dimensional numerical modeling of marine controlled-source electromagnetic responses in a layered anisotropic seabed using integral equation method. Acta Physica Sinica, 58(6), 3848–3857.

    Google Scholar 

  • Constable, S., & Cox, C. (1996). Marine controlled-source electromagnetic sounding 2: The PEGASUS experiment. Journal of Geophysical Research, 101(B3), 5519–5530.

    Article  Google Scholar 

  • Cox, C., Constable, S., Chave, A., & Webb, S. C. (1986). Controlled-source electromagnetic sounding of the oceanic lithosphere. Nature, 320(6057), 52–54.

    Article  Google Scholar 

  • da Silva, N. Y., Morgan, J. V., MacGregor, L., & Warner, M. (2012). A finite element multifrontal method for 3D CSEM modeling in the frequency domain. Geophysics, 77(2), E101–E115.

    Article  Google Scholar 

  • Everett, M. E. (2012). Theoretical developments in electromagnetic induction geophysics with selected applications in the near surface. Surveys In Geophysics, 33, 29–63.

    Article  Google Scholar 

  • Farquharson, C. G., & Miensopust, M. (2011). Three-dimensional finite element modelling of magnetotelluric data with a divergence correction. Journal of Applied Geophysics, 75, 699–710.

    Article  Google Scholar 

  • Frank, A., Borner, R. U., & Spitzer, K. (2007). Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography. Geophysical Journal International, 171, 71–86.

    Article  Google Scholar 

  • Freund, R., & Nachtigal, N. (1994). An implementation of the QMR method based on coupled 2-term recurrences. SIAM Journal on Scientific Computing, 15, 313–337.

    Article  Google Scholar 

  • Grayver, A. V., & Kolev, T. V. (2015). Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method. Geophysics, 80(6), E277–E291.

    Article  Google Scholar 

  • Johnson, C., & Erikson, K. (1991). Finite element methods for parabolic problems I: A linear model problem. SIAM Journal on Numerical Analysis, 28, 43–77.

    Article  Google Scholar 

  • Key, K., & Weiss, C. (2006). Adaptive finite element modeling using unstructured grids: The 2D magnetotelluric example. Geophysics, 71(6), G291–G299.

    Article  Google Scholar 

  • Li, Y., & Constable, S. (2007). 2D marine controlled-source electromagnetic modelling: Part 2-the effect of bathymetry. Geophysics, 72(2), WA63–WA71.

    Article  Google Scholar 

  • Li, J., Farquharson, C. G., & Hu, X. (2017a). 3D vector finite-element electromagnetic forward modeling for large loop sources using a total-field algorithm and unstructured tetrahedral grids. Geophysics, 82(1), E1–E16.

    Article  Google Scholar 

  • Li, Y., & Key, K. (2007). 2D marine controlled-source electromagnetic modelling: Part I-an adaptive finite element algorithm. Geophysics, 72(2), WA51–WA62.

    Article  Google Scholar 

  • Li, Y., & Li, G. (2016). Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles. Journal of Geophysics and Engineering, 13, 505–515.

    Article  Google Scholar 

  • Li, G., Li, Y., & Han, B. (2017b). Accurate interpolation at receiver positions: A novel method for frequency-domain marine CSEM finite-difference modelling. Pure and Applied Geophysics, 174, 2143–2160.

    Article  Google Scholar 

  • Liu, Y., & Yin, C. (2014). 3D anisotropic modeling for airborne EM systems using finite-difference method. Journal of Applied Geophysics, 109, 186–194.

    Article  Google Scholar 

  • MacGregor, L., Sinha, M., & Constable, S. (2001). Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled-source electromagnetic sounding. Geophysical Journal International, 146(1), 217–236.

    Article  Google Scholar 

  • Newman, G. A., & Alumbaugh, D. L. (1995). Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophysical Prospecting, 43(8), l021–1042.

    Article  Google Scholar 

  • Ovall, J. S. (2006). Asymptotically exact functional error estimators based on superconvergent gradient recovery. Numerische Mathematik, 102, 543–558.

    Article  Google Scholar 

  • Puzyrev, V., Koldan, J., de la Puente, J., Houzeaux, G., Vazquez, M., & Cela, J. M. (2013). A parallel finite-element method for three dimensional controlled source electromagnetic forward modelling. Geophysical Journal International, 193(2), 678–693.

    Article  Google Scholar 

  • Ren, Z., Kalscheuer, T., Greenhalgh, S., & Maurer, H. (2013). A goal-oriented adaptive finite element approach for plane wave 3D electromagnetic modeling. Geophysical Journal International, 194, 700–718.

    Article  Google Scholar 

  • Schwarzbach, C., Börner, R. U., & Spitzer, K. (2011). Three-dimensional adaptive higher order finite element simulation for geoelectromagnetics—a marine CSEM example. Geophysical Journal International, 187, 63–74.

    Article  Google Scholar 

  • Si, H. (2015). TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 41(2), 11.

    Article  Google Scholar 

  • Tabbara, M., Blacker, T., & Belytschko, T. (1994). Finite element derivative recovery by moving least square interpolants. Computer Methods in Applied Mechanics and Engineering, 117(1–2), 211–223.

    Article  Google Scholar 

  • Tang, W., Li, Y., Swidinsky, A., & Liu, J. (2015). Three-dimensional controlled-source electromagnetic modelling with a well casing as a grounded source: A hybrid method of moments and finite element scheme. Geophysical Prospecting, 2015(63), 1491–1507.

    Article  Google Scholar 

  • Tang, J., Ren, Z., & Hua, X. (2007). Theoretical analysis of geo-electromagnetic modeling on Coulomb gauged potentials by adaptive finite element method. Chinese Journal of Geophysics, 50(5), 1584–1594.

    Article  Google Scholar 

  • Weitemeyer, K., Constable, S., & Key, K. (2006). Marine EM techniques for gas-hydrate detection and hazard mitigation. The Leading Edge, 25, 629.

    Article  Google Scholar 

  • Xiong, Z., & Tripp, A. C. (1997). 3-D electromagnetic modeling for near surface targets using integral equations. Geophysics, 62(4), 1097–1106.

    Article  Google Scholar 

  • Yang, B., Xu, Y., He, Z., & Sun, W. (2012). 3D frequency-domain modeling of marine controlled source electromagnetic responses with topography using finite volume method. Chinese Journal of Geophysics, 55(4), 1390–1399.

    Google Scholar 

  • Zhdanov, M. S., Lee, S. K., & Yoshioka, K. (2006). Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity. Geophysics, 71(6), G333–G345.

    Article  Google Scholar 

  • Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite-element method (5th edition), volume I: Basic foundation. Oxford: Butterworth-Heinemann.

    Google Scholar 

Download references

Acknowledgements

The authors give special thanks to Hang Si for the open source code TetGen which is used in this paper. The editor Prof. Farquharson is acknowledged for his valuable suggestions. The anonymous reviewers are thanked for detailed comments, which greatly improve the clarity of the paper. This study was jointly supported by the National Natural Science Foundation of China (41774078, 41774080, 41604086 and 41704075), the Natural Science Foundation of Jiangxi Province (20161BAB211027), the Natural Science Foundation of Shandong Province (ZR20161DQ15) and the Open Foundation of Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (RGET1605). Professor David Nobes of East China University of Technology has proofread and checked the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Li, Y., Li, G. et al. 3-D Adaptive Finite-Element Modeling of Marine Controlled-Source Electromagnetics with Seafloor Topography Based on Secondary Potentials. Pure Appl. Geophys. 175, 4449–4463 (2018). https://doi.org/10.1007/s00024-018-1921-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1921-y

Keywords

Navigation