Skip to main content
Log in

3-D Marine CSEM Modeling in General Anisotropic Media by Using an Adaptive Finite Element Approach Based on the Vector-Scalar Potential

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

We present three-dimensional (3-D) modeling method of marine controlled-source electromagnetic (CSEM) fields in general anisotropic media using an adaptive finite element approach based on the vector-scalar potential. The modeling is based on the governing Helmholtz equations in the vector-scalar potential system. Unstructured tetrahedral grids are employed, which can exactly simulate the terrain relief and complex electrical structures. Moreover, based on the gradient recovery technology, the adaptive finite element approach is used to drive the mesh refinement, and make the finite element solutions converge gradually to the exact solutions. The primary-secondary field approach is used to improve the numerical accuracy of CSEM fields near the source point, where the primary field is calculated by using the quasi-analytical formula. The accuracy of this approach is verified by a one-dimensional model. Two 3-D models are used to demonstrate the effectiveness of the adaptive mesh refinement and the influences of dipping anisotropy layer on the marine CSEM responses for both inline and broadside geometries. The complex synthetic model is simulated to show the capability and flexibility of the approach for geometrically complex situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari, S., Farquharson, C. G., and MacLachlan, S. P., 2017. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems. Geophysical Journal International., 210: 105–129.

    Article  Google Scholar 

  • Babuška, I., and Rheinboldt, W. C., 1978. A posteriori error estimates for the finite element methods. International Journal for Numerical Methods in Engineering, 12: 1597–1615.

    Article  Google Scholar 

  • Badea, E. A., Everett, M. E., and Newman, G. A., 2001. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66(3): 786–799.

    Article  Google Scholar 

  • Bank, R. E., and Xu, J. C., 2003. Asymptotically exact a posteriori error estimators, part II: General unstructured grids. SIAM Journal on Numerical Analysis, 41: 2313–2332.

    Article  Google Scholar 

  • Brown, V., Hoversten, M., Key, K., and Chen, J., 2012. Resolution of reservoir scale electrical anisotropy from marine CSEM data. Geophysics, 77(2): E147–E158.

    Article  Google Scholar 

  • Cai, H., Xiong, B., and Zhdanov, M., 2015. Three dimensional marine controlled source electromagnetic modelling in anisotropic medium using finite element method. Chinese Journal of Geophysics, 58(3): 2839–2850 (in Chinese with English abstract).

    Google Scholar 

  • Cao, X., Yin, C., Zhang, B., Huang, X., Liu, Y., and Cai, J., 2018. A goal-oriented adaptive finite-element method for 3D MT anisotropic modeling with topography. Chinese Journal of Geophysics, 61(6): 2618–2628 (in Chinese with English abstract).

    Google Scholar 

  • Chen, H., Li, T., Xiong, B., Chen, S., and Liu, L., 2017. Finite element modeling of 3D CSEM in arbitrarily anisotropic medium using potentials on unstructured grids. Chinese Journal of Geophysics, 60(8): 3254–3263 (in Chinese with English abstract).

    Google Scholar 

  • Ellis, M. H., Sinha, M., and Parr, R., 2010. Role of fine-scale layering and grain alignment in the electrical anisotropy of marine sediments. First Break, 28(9): 49–57.

    Article  Google Scholar 

  • Franke, A., Börner, R. U., and Spitzer, K., 2007. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography. Geophysical Journal International., 171: 71–86.

    Article  Google Scholar 

  • Grayver, A. V., and Kolev, T. V., 2015. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method. Geophysics, 80(6): E277–E291.

    Article  Google Scholar 

  • Hesthammer, J., Stefatos, A., Boulaenko, M., Fanavoll, S., and Danielsen, J., 2010. CSEM performance in light of well results. The Leading Edge, 29(1): 34–41.

    Article  Google Scholar 

  • Jaysaval, P., Shantsev, D. V., de la Kethulle de Ryhove, S., and Bratteland, T., 2016. Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner. Geophysical Journal International., 207: 1554–1572.

    Article  Google Scholar 

  • Jin, J., 2002. The Finite Element Method in Electromagnetics. 2nd edition. John Wiley & Sons Incorporation, New York, 22pp.

    Google Scholar 

  • Key, K., and Weiss, C., 2006. Adaptive finite element modeling using unstructured grids: The 2D magnetotelluric example. Geophysics, 71(6): G291–G299.

    Article  Google Scholar 

  • Li, G., Tang, C., and Li, L., 2013a. High-efficiency improved symmetric successive over-relaxation preconditioned conjugate gradient method for solving large-scale finite element linear equations. Applied Mathematics and Mechanics (English Edition), 34(10): 1225–1236.

    Article  Google Scholar 

  • Li, J., Li, Y., Liu, Y., Spitzer, K., and Han, B., 2021. 3-D marine CSEM forward modelling with general anisotropy using an adaptive finite element method. IEEE Geoscience and Remote Sensing Letters, 18(11): 1936–1940.

    Article  Google Scholar 

  • Li, Y., and Key, K., 2007. 2D marine controlled-source electromagnetic modelling, Part I—An adaptive finite element algorithm. Geophysics, 72(2): WA51–WA62.

    Article  Google Scholar 

  • Li, Y., and Li, G., 2016. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles. Journal of Geophysics and Engineering, 13: 505–515.

    Article  Google Scholar 

  • Li, Y., Luo, M., and Pei, J., 2013b. Adaptive finite element modeling of marine controlled-source electromagnetic fields in two-dimensional general anisotropic media. Journal of Ocean University of China, 12(1): 1–5.

    Article  Google Scholar 

  • Liu, Y., and Yin, C., 2014. 3D anisotropic modeling for airborne EM systems using finite-difference method. Journal of Applied Geophysics, 109: 186–194.

    Article  Google Scholar 

  • Liu, Y., Xu, Z., and Li, Y., 2018. Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media. Journal of Applied Geophysics, 151: 113–124.

    Article  Google Scholar 

  • Luo, M., and Li, Y., 2015. Effects of the electric anisotropy on marine controlled-source electromagnetic responses. Chinese Journal of Geophysics, 58(8): 2851–2861 (in Chinese with English abstract).

    Google Scholar 

  • Ovall, J. S., 2004. Duality-based adaptive refinement for elliptic PEDs. PhD thesis. University of California, San Diego.

    Google Scholar 

  • Ovall, J. S., 2006. Asymptotically exact functional error estimators based on super convergent gradient recovery. Numerical Mathematics, 102: 543–558.

    Article  Google Scholar 

  • Peng, R., Hu, X., Li, J., and Liu, Y., 2020. Finite element simulation of 3-D marine controlled source electromagnetic fields in anisotropic media with unstructured tetrahedral grids. Pure and Applied Geophysics, 177: 4871–4882.

    Article  Google Scholar 

  • Puzyrev, V., Koldan, J., Puente, J., Houzeaux, G., Vázquez, M., and Cela, J., 2013. A parallel finite-element method for three dimensional controlled source electromagnetic forward modelling. Geophysical Journal International., 193(2): 678–693.

    Article  Google Scholar 

  • Ren, Z., Kalscheuer, T., Greenhalgh, S., and Maurer, H., 2013. A goal-oriented adaptive finite element approach for plane wave 3D electromagnetic modeling. Geophysical Journal International., 194: 700–718.

    Article  Google Scholar 

  • Rochlitz, R., Skibbe, N., and Günther, T., 2019. custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data. Geophysics, 84(2): F17–F33.

    Article  Google Scholar 

  • Schwalenberg, K., Haeckel, M., Poort, J., and Jegen, M., 2010. Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: Results from Opouawe Bank, Hikurangi Margin, New Zealand. Marine Geology, 272(1): 79–88.

    Article  Google Scholar 

  • Schwarzbach, C., Börner, R. U., and Spitzer, K., 2011. Three-dimensional adaptive higher order finite element simulation for geoelectromagnetics — A marine CSEM example. Geophysical Journal International., 187: 63–74.

    Article  Google Scholar 

  • Weitemeyer, K., Constable, S., and Key, K., 2006. Marine EM techniques for gas-hydrate detection and hazard mitigation. The Leading Edge, 25(5): 629–632.

    Article  Google Scholar 

  • Yang, J., Liu, Y., and Wu, X., 2015. 3D simulation of marine CSEM using vector finite element method on unstructured grids. Chinese Journal of Geophysics, 58(8): 2827–2838 (in Chinese with English abstract).

    Google Scholar 

  • Ye, Y., Du, J., Liu, Y., Ai, Z., and Jiang, F., 2021. Three-dimensional magnetotelluric modeling in general anisotropic media using nodal-based unstructured finite element method. Computers & Geosciences, 148: 104686.

    Article  Google Scholar 

  • Ye, Y., Li, Y., Li, G., Tang, W., and Zhang, Z., 2018. 3D adaptive finite-element modeling of marine controlled-source electromagnetics with seafloor topography based on secondary potentials. Pure and Applied Geophysics, 175(12): 4449–4463.

    Article  Google Scholar 

  • Yin, C., Zhang, B., Liu, Y., and Cai, J., 2017. A goal oriented adaptive algorithm for 3D magnetotellruic forward modeling. Chinese Journal of Geophysics, 60(1): 327–336 (in Chinese with English abstract).

    Google Scholar 

  • Zienkiewiez, O. C., and Zhu, J. Z., 1992. The superconvergence path recovery and a posteriori error estimates, Part l-2. International Journal for Numerical Methods in Engineering, 33: 1331–1364.

    Article  Google Scholar 

Download references

Acknowledgements

The open source code TetGen was used in this paper for mesh generation, and the software Paraview was used to plot the unstructured mesh. We acknowledge the funding support from the Natural Science Foundation of Jiangxi Province, China (Nos. 20202ACBL211006, 20202BAB2 13017), and the National Natural Science Foundation of China (Nos. 41774078, 41904075). We also thank two anonymous reviewers for valuable comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Jiang, F., Feng, Z. et al. 3-D Marine CSEM Modeling in General Anisotropic Media by Using an Adaptive Finite Element Approach Based on the Vector-Scalar Potential. J. Ocean Univ. China 21, 1205–1213 (2022). https://doi.org/10.1007/s11802-022-4954-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4954-x

Key words

Navigation