Skip to main content
Log in

Reflection and Transmission of P-Waves in an Intermediate Layer Lying Between Two Semi-infinite Media

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

With a motivation to gain physical insight of reflection as well as transmission phenomena in frozen (river/ocean) situation for example in Antarctica and other coldest place on Earth, the present article undertakes the analysis of reflection and transmission of a plane wave at the interfaces of layered structured comprised of a water layer of finite thickness sandwiched between an upper half-space constituted of ice and a lower isotropic elastic half-space, which may be useful in geophysical exploration in such conditions. A closed form expression of reflection/transmission coefficients of reflected and transmitted waves has been derived in terms of angles of incidence, propagation vector, displacement vector and elastic constants of the media. Expressions corresponding to the energy partition of various reflected and transmitted waves have also been established analytically. It has been remarkably shown that the law of conservation of energy holds good in the entire reflection and transmission phenomena for different angles of incidence. A numerical examples were performed so to graphically portray the analytical findings. Further the deduced results are validated with the pre-established classical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Achenbach, J. D. (1976). Wave propagation in elastic solids. New York: North Holland Publishing Company.

    Google Scholar 

  • Båth, M. (1968). Mathematical aspects of seismology (p. 415). London: Elsevier Press.

    Google Scholar 

  • Chattopadhyay, A. (2004). Wave reflection and refraction in triclinic crystalline media. Archive of Applied Mechanics, 73(8), 568–579.

    Article  Google Scholar 

  • Chattopadhyay, A., Kumari, P., & Sharma, V. K. (2013). Reflection and transmission of a three-dimensional plane qP wave through a layered fluid medium between two distinct triclinic half-spaces. International Journal of Geomechanics, 14(2), 182–190.

    Article  Google Scholar 

  • Crampin, S. (1975). Distinctive particle motion of surface waves as a diagnostic of anisotropic layering. Geophysical Journal International, 40(2), 177–186.

    Article  Google Scholar 

  • Ewing, W. M., Jardetzky, W. S., & Press, F. (1957). Elastic waves in layered media. New York: McGraw Hill.

    Book  Google Scholar 

  • Ewing, M., & Press, F. (1950). Crustal structure and surface-wave dispersion. Bulletin of the Seismological Society of America, 40(4), 271–280.

    Google Scholar 

  • Gubbins, D. (1990). Seismology and plate tectonics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gutenberg, B. (1944). Energy ratio of reflected and refracted seismic waves. Bulletin of the Seismological Society of America, 34(2), 85–102.

    Google Scholar 

  • Hearmon, R. F. S. (1961). An introduction to applied anisotropic elasticity. London: Oxford University Press.

    Book  Google Scholar 

  • Henneke, E. G. (1972). Reflection-refraction of a stress wave at a plane boundary between anisotropic media. The Journal of the Acoustical Society of America, 51(1B), 210–217.

    Article  Google Scholar 

  • Keith, C. M., & Crampin, S. (1977). Seismic body waves in anisotropic media: Reflection and refraction at a plane interface. Geophysical Journal International, 49(1), 181–208.

    Article  Google Scholar 

  • Knott, C. G. (1899). III. Reflection and refraction of elastic waves, with seismological applications. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 48(290), 64–97.

    Article  Google Scholar 

  • Ogden, R. W., & Sotiropoulos, D. A. (1997). The effect of pre-stress on the propagation and reflection of plane waves in incompressible elastic solids. IMA Journal of Applied Mathematics, 59(1), 95–121.

    Article  Google Scholar 

  • Paswan, B., Sahu, S. A., & Chattopadhyay, A. (2016). Reflection and transmission of plane wave through fluid layer of finite width sandwiched between two monoclinic elastic half-spaces. Acta Mechanica, 227(12), 3687–3701.

    Article  Google Scholar 

Download references

Acknowledgements

The author Ms. Pooja Singh conveys her sincere thanks to Indian Institute of Technology (Indian School of Mines) Dhanbad, India for providing Junior Research Fellowship and facilitating us with its best research facility. Authors express their sincere thanks to Science and Engineering Research Board, Department of Science and Technology, New Delhi for providing financial support through Project no. EMR/2017/000263. They are also thankful to reviewers for their useful suggestions and valuable comments in the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Chattopadhyay, A., Srivastava, A. et al. Reflection and Transmission of P-Waves in an Intermediate Layer Lying Between Two Semi-infinite Media. Pure Appl. Geophys. 175, 4305–4319 (2018). https://doi.org/10.1007/s00024-018-1896-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1896-8

Keywords

Navigation