Skip to main content
Log in

Energy Characteristics of Reflection and Transmission for SV-Waves at the Interface of Layered Unsaturated Soils

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The propagation of elastic waves in porous media has always been an important research topic in the fields of geotechnical engineering, ocean engineering, and geophysics, but the energy problem of propagation at different media interfaces is relatively less involved.

Methods

This article adopts theoretical derivation and parameter analysis methods to study the energy characteristics of reflection and transmission of SV waves at the interface of layered unsaturated soil. Firstly, a reflection and transmission model of planar SV waves at the interface of layered unsaturated soil was established. Using the Helmholtz vector decomposition principle, a theoretical expression for the amplitude ratio of SV waves at the interface was derived. Secondly, combined with the reflection amplitude ratio, various wave energy coefficients are further solved. Finally, the relationship between energy reflection/transmission coefficient and incident angle, soil saturation, and porosity was analyzed and discussed.

Results

The results show that the amplitude and energy reflection/transmission coefficients are not only affected by the incident angle but varied significantly with the change of saturation and porosity. The energy carried by the incident SV wave mainly occupied by the reflected SV wave.

Conclusions

This conclusion has certain guiding significance for the theoretical research of soil dynamics and related engineering exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Deng Q (2013) Analysis of the energy attenuation of seismic waves under the influence of reflection and transmission. Hunan University

  2. Zhou X, Xia T, Xu P (2006) Reflection and transmission of seismic waves in the boundary surface of water and gas in saturated soil medium. Acta Seismol Sin 04:372–379+450

    Google Scholar 

  3. He Y, Zhong G (2015) Summary of seismic recognition of submarine landslide and its reflection. Mar Sci 39(01):116–125

    Google Scholar 

  4. Biot M (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. J Acoust Soc Am 28(2):168–178

    Article  Google Scholar 

  5. Lo W, Sposito G, Majer E (2005) Wave propagation through elastic porous media containing two immiscible fluids. Water Resour Res 41(2):W02025. https://doi.org/10.1029/2004WR003162

    Article  Google Scholar 

  6. Rubino J, Ravazzoli C, Santos J (2006) Reflection and transmission of waves in composite porous media: a quantification of energy conversions involving slow waves. J Acoust Soc Am 120(5):2425–2436

    Article  Google Scholar 

  7. Tomar S, Arora A (2006) Reflection and transmission of elastic waves at an elastic/porous solid saturated by two immiscible fluids. Int J Solids Struct 43(7/8):1991–2013

    Article  Google Scholar 

  8. Albers B (2009) Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model. Transp Porous Media 80(1):173–192

    Article  Google Scholar 

  9. Xu P, Xia T (2006) Reflection and transmission of elastic wave at the interface of nearly saturated soil and elastic soil. Mech Eng 28(6):58–63

    Google Scholar 

  10. Yeh C, Lo W, Jan C (2010) Reflection and refraction of obliquely incident elastic wavesupon the interface between two porous elastic half-spaces saturated by different fluid mixtures. J Hydrol 395(1/2):91–102

    Article  Google Scholar 

  11. Zhou F, Song R (2015) Free field response of heterogeneous saturated soil during plane P-SV wave incident. Acta Seismol Sin 37(4):629–639

    MathSciNet  Google Scholar 

  12. Zhou L, Yang S (2010) Reflection and transmission of plane waves with layered porous media seabed. Tech Acoust 29(6):559–564

    Google Scholar 

  13. Lu J, Zhou H, Liu Y (2018) Reflection of the transverse isotropic layered saturated soil dynamic problem, transmission matrix method. Rock Soil Mech 39(6):2219–2226

    Google Scholar 

  14. Yin X, Zhao Z, Zong Z (2018) Study on the dispersion characteristics of seismic wave reflection and transmission coefficient based on a layered two-hole medium. Chin J Geophys 61(7):2937–2949

    Google Scholar 

  15. Yang C, Wang Y, Chen Y (2018) Analysis of the seismic reflection characteristics of the bipolar medium thin sand layer. Geophys Prospect Pet 57(2):186–197

    Google Scholar 

  16. Chen W (2013) Study of the propagation characteristics of body waves and surface waves in unsaturated elastic porous media. Ph.D. thesis, Zhejiang University, Hangzhou

  17. Sharma M (2018) Reflection-refraction of attenuated waves at the interface between a thermo-poroelastic medium and a thermoelastic medium. Waves Random Complex Media 28(3):570–587

    Article  MathSciNet  Google Scholar 

  18. She Y (2019) Numerical study of the elastic wave propagation law in soil media. Low Temp Archit Technol 41(7):88–91

    Google Scholar 

  19. Chen W, Xia T, Chen W (2012) Propagation of plane P waves at the interface between an elastic solid and an unsaturated poroelastic medium. Appl Math Mech 33(7):781–795

    Article  MathSciNet  Google Scholar 

  20. Liu H, Jiang M, Zhou F (2021) Attenuation characteristics of thermoelastic waves in unsaturated soil. Arab J Geosci 14(18):1–11

    Article  Google Scholar 

  21. Zhou F, Liu H, Li S (2019) Propagation of thermoelastic waves in unsaturated porothermoelastic media. J Therm Stresses 42(10):1256–1271

    Article  Google Scholar 

  22. Liu H, Dai G, Zhou F (2021) Propagation behavior of homogeneous plane-P1-wave at the interface between a thermoelastic solid medium and an unsaturated porothermoelastic medium. Eur Phys J Plus 136(11):1163

    Article  Google Scholar 

  23. Liu H, Dai G, Zhou F (2022) A mixture theory analysis for reflection phenomenon of homogeneous plane-P1-wave at the boundary of unsaturated porothermoelastic media. Geophys J Int 228(2):1237–1259

    Article  Google Scholar 

  24. Kumar M, Singh A, Kumari M (2021) Reflection and refraction of elastic waves at the interface of an elastic solid and partially saturated soils. Acta Mech 232:33–55

    Article  MathSciNet  Google Scholar 

  25. Shekhar S (2021) Effect of local fluid flow and loose boundary on wave propagation through interface between double porosity solid and cracked elastic solid. Waves Random Complex Media 33:1–23

    MathSciNet  Google Scholar 

  26. Chen W, Xia T, Wang N (2013) Reflection and transmission of shear waves on the boundary surface of different saturation soil layers. Rock Soil Mech 34(3):894–900

    Google Scholar 

  27. Zhang M, Wang X, Yang G (2014) Solution of dynamic Greens function for unsaturated soil under internal excitation. Soil Dyn Earthq Eng 64:63–84

    Article  Google Scholar 

  28. Abed A, Solowski W (2017) A study on how to couple thermo-hydro-mechanical behavior of unsaturated soils: physical equations, numerical implementation and examples. Comput Geotech 92:132–155

    Article  Google Scholar 

  29. Wang E, Carcione J, Ba J (2020) Reflection and transmission of plane elastic waves at an interface between two double-porosity media: effect of local fluid flow. Surv Geophys 41(2):283–322

    Article  Google Scholar 

  30. Murphy W (1982) Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass. J Acoust Soc Am 71(6):1458–1468

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51978320, 11962016), The Funds for Creative Research Groups of Gansu Province, China (20JR5RA478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxi Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The expression of each element in Eq. (1)

$$\left. \begin{gathered} a_{11} = \frac{{A_{13} A_{22} - A_{12} A_{23} }}{{A_{11} A_{22} - A_{12} A_{21} }},a_{12} = \frac{{A_{14} A_{22} }}{{A_{11} A_{22} - A_{12} A_{21} }},a_{13} = - \frac{{A_{12} A_{24} }}{{A_{11} A_{22} - A_{12} A_{21} }} \hfill \\ a_{21} = \frac{{A_{13} A_{21} - A_{11} A_{23} }}{{A_{12} A_{21} - A_{11} A_{22} }},a_{22} = \frac{{A_{14} A_{21} }}{{A_{12} A_{21} - A_{11} A_{22} }},a_{23} = - \frac{{A_{11} A_{24} }}{{A_{12} A_{21} - A_{11} A_{22} }} \hfill \\ \end{gathered} \right\},\vartheta^{l} = \frac{{nS_{l} }}{{{\mathbf{K}}_{l} }},\vartheta^{g} = \frac{{nS_{g} }}{{{\mathbf{K}}_{g} }},$$

\(B_{1} = \alpha S_{{\text{e}}} a_{12} + \alpha \left( {1 - S_{{\text{e}}} } \right)a_{22}\), \(B_{2} = \alpha S_{{\text{e}}} a_{13} + \alpha \left( {1 - S_{{\text{e}}} } \right)a_{23}\), \(\lambda_{{\text{c}}} = \lambda + \alpha S_{{\text{e}}} a_{11} + \alpha \left( {1 - S_{{\text{e}}} } \right)a_{21}\).

with

$$\left. \begin{gathered} A_{11} = \xi S_{ww} S_{l} + \frac{{nS_{l} }}{{K^{w} }} - n\frac{{\partial S_{l} }}{{\partial p_{{\text{c}}} }},A_{12} = \xi S_{gg} S_{l} + n\frac{{\partial S_{l} }}{{\partial p_{{\text{c}}} }}A_{13} = \alpha S_{l} ,A_{14} = nS_{l} \hfill \\ A_{21} = \xi S_{ww} S_{g} + n\frac{{\partial S_{l} }}{{\partial p_{{\text{c}}} }},A_{22} = \xi S_{gg} S_{g} + \frac{{nS_{g} }}{{K^{g} }} - n\frac{{\partial S_{l} }}{{\partial p_{{\text{c}}} }},A_{23} = \alpha S_{g} ,A_{24} = nS_{g} \hfill \\ \end{gathered} \right\},$$

\(\alpha = 1 - {{K_{b} } \mathord{\left/ {\vphantom {{K_{b} } {K_{s} }}} \right. \kern-0pt} {K_{s} }}\), \(S_{e} = {{\left( {S_{l} - S_{res}^{l} } \right)} \mathord{\left/ {\vphantom {{\left( {S_{l} - S_{res}^{l} } \right)} {\left( {S_{sat}^{l} - S_{res}^{l} } \right)}}} \right. \kern-0pt} {\left( {S_{sat}^{l} - S_{res}^{l} } \right)}}\), \(K_{l} = {{k_{rl} } \mathord{\left/ {\vphantom {{k_{rl} } {\mu_{l} }}} \right. \kern-0pt} {\mu_{l} }}\), \(K_{g} = {{k_{rg} } \mathord{\left/ {\vphantom {{k_{rg} } {\mu_{g} }}} \right. \kern-0pt} {\mu_{g} }}\),

\(k_{r}^{l} = \sqrt {S_{e} } \left[ {1 - \left( {1 - S_{e}^{{{1 \mathord{\left/ {\vphantom {1 m}} \right. \kern-0pt} m}}} } \right)^{m} } \right]^{2}\), \(k_{r}^{g} = \sqrt {1 - S_{e} } \left( {1 - S_{e}^{{{1 \mathord{\left/ {\vphantom {1 m}} \right. \kern-0pt} m}}} } \right)^{2m}\).

where \(\chi\), m and \(d\) are the material parameters of the V-G model. \(S_{e}\) is the effective saturation of the pore fluid with \(S_{res}^{l}\) and \(S_{sat}^{l}\) the residual saturation and complete saturation, respectively. This paper considers \(S_{sat}^{l} = 1\). Other symbols are expressed as

\(\xi { = }{{\left( {\alpha - n} \right)} \mathord{\left/ {\vphantom {{\left( {\alpha - n} \right)} {K_{s} }}} \right. \kern-0pt} {K_{s} }}\), \(p_{c} = \left( {{1 \mathord{\left/ {\vphantom {1 \chi }} \right. \kern-0pt} \chi }} \right)\rho_{s} + \left( {S_{e}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} m}} \right. \kern-0pt} m}}} - 1} \right)^{{{1 \mathord{\left/ {\vphantom {1 d}} \right. \kern-0pt} d}}}\), \(S_{ww} = S_{e} + {{p_{c} } \mathord{\left/ {\vphantom {{p_{c} } {\left( {S_{sat} - S_{res} } \right)}}} \right. \kern-0pt} {\left( {S_{sat} - S_{res} } \right)}}A_{s}\), \(S_{gg} = \left( {1 - S_{e} } \right) - {{p_{c} } \mathord{\left/ {\vphantom {{p_{c} } {\left( {S_{sat} - S_{res} } \right)}}} \right. \kern-0pt} {\left( {S_{sat} - S_{res} } \right)}}A_{s}\), \(A_{s} = \chi md\left( {S_{sat} - S_{res} } \right)S_{e}^{{{{\left( {m + 1} \right)} \mathord{\left/ {\vphantom {{\left( {m + 1} \right)} m}} \right. \kern-0pt} m}}} \left( {S_{e}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} m}} \right. \kern-0pt} m}}} - 1} \right)^{{{{\left( {d - 1} \right)} \mathord{\left/ {\vphantom {{\left( {d - 1} \right)} d}} \right. \kern-0pt} d}}}\).

Appendix 2

The expression of each element in Eqs. (5a) and (5b)

$$\left. \begin{gathered} b_{11} = \rho^{l} \omega^{2} - a_{11} k_{{\text{P}}}^{2} ,b_{12} = \rho^{l} \omega^{2} + \vartheta^{l} {\text{i}} \omega - a_{12} k_{{\text{P}}}^{2} ,b_{13} = - a_{13} k_{{\text{P}}}^{2} ,b_{21} = \rho^{g} \omega^{2} - a_{21} k_{{\text{P}}}^{2} \hfill \\ b_{23} = \rho^{g} \omega^{2} + \vartheta^{g} {\text{i}} \omega - a_{23} k_{{\text{P}}}^{2} ,b_{31} = \rho \omega^{2} - \left( {\lambda_{c} + 2\mu } \right)k_{{\text{P}}}^{2} ,b_{32} = nS^{l} \rho^{l} \omega^{2} - B_{1} k_{{\text{P}}}^{2} ,b_{33} = nS^{g} \rho^{g} \omega^{2} - B_{2} k_{{\text{P}}}^{2} \hfill \\ \end{gathered} \right\},$$
$$\left. \begin{gathered} c_{11} = \rho^{l} \omega^{2} ,c_{12} = \rho^{l} \omega^{2} + \vartheta^{l} {\text{i}} \omega ,c_{13} = 0,c_{21} = \rho^{g} \omega^{2} ,c_{12} = \rho^{l} \omega^{2} + \vartheta^{l} {\text{i}} \omega ,c_{13} = 0 \hfill \\ c_{21} = \rho^{g} \omega^{2} ,c_{22} = 0,c_{23} = \rho^{g} \omega^{2} + \vartheta^{g} {\text{i}} \omega ,c_{31} = \rho \omega^{2} - \mu k_{{\text{S}}}^{2} ,c_{32} = nS^{l} \rho^{l} \omega^{2} ,c_{33} = nS^{g} \rho^{g} \omega^{2} \hfill \\ \end{gathered} \right\}.$$

Appendix 3

The expression of each element in Eq. (16)

$$\left. \begin{gathered} f_{11} = \left[ { - \left( {\lambda_{c}^{\rm I} + 2\mu^{\rm I} n_{{{\text{P}}_{1} }}^{{{\text{re2}}}} } \right) - B_{1}^{\rm I} \delta_{{l{\text{P}}_{1} }}^{{{\text{re}}}} - B_{2}^{\rm I} \delta_{{g{\text{P}}_{1} }}^{{{\text{re}}}} } \right]k_{{{\text{P}}_{1} }}^{{{\text{re2}}}} ,f_{12} = \left[ { - \left( {\lambda_{c}^{\rm I} + 2\mu^{\rm I} n_{{{\text{P}}_{2} }}^{{{\text{re2}}}} } \right) - B_{1}^{\rm I} \delta_{{l{\text{P}}_{2} }}^{{{\text{re}}}} - B_{2}^{\rm I} \delta_{{g{\text{P}}_{2} }}^{{{\text{re}}}} } \right]k_{{{\text{P}}_{2} }}^{{{\text{re2}}}} \hfill \\ f_{13} = \left[ { - \left( {\lambda_{c}^{\rm I} A_{{s{\text{P}}_{3} }}^{{{\text{re}}}} + 2\mu^{\rm I} n_{{{\text{P}}_{3} }}^{{{\text{re2}}}} } \right) - B_{1}^{\rm I} \delta_{{l{\text{P}}_{3} }}^{{{\text{re}}}} - B_{2}^{\rm I} \delta_{{g{\text{P}}_{3} }}^{{{\text{re}}}} } \right]k_{{{\text{P}}_{3} }}^{{{\text{re2}}}} ,f_{14} = \left( {\lambda_{c}^{{{\rm I}{\rm I}}} + 2\mu^{{{\rm I}{\rm I}}} n_{{{\text{P}}_{1} }}^{{{\text{tr2}}}} + B_{1}^{{{\rm I}{\rm I}}} \delta_{{l{\text{P}}_{1} }}^{{{\text{tr}}}} + B_{2}^{{{\rm I}{\rm I}}} \delta_{{g{\text{P}}_{1} }}^{{{\text{tr}}}} } \right)k_{{{\text{P}}_{1} }}^{{{\text{tr2}}}} \hfill \\ f_{15} = \left( {\lambda_{c}^{{{\rm I}{\rm I}}} + 2\mu^{{{\rm I}{\rm I}}} n_{{{\text{P}}_{2} }}^{{{\text{tr2}}}} + B_{1}^{{{\rm I}{\rm I}}} \delta_{{l{\text{P}}_{2} }}^{{{\text{tr}}}} + B_{2}^{{{\rm I}{\rm I}}} \delta_{{g{\text{P}}_{2} }}^{{{\text{tr}}}} } \right)k_{{{\text{P}}_{2} }}^{{{\text{tr2}}}} ,f_{16} = \left( {\lambda_{c}^{{{\rm I}{\rm I}}} + 2\mu^{{{\rm I}{\rm I}}} n_{{{\text{P}}_{3} }}^{{{\text{tr2}}}} + B_{1}^{{{\rm I}{\rm I}}} \delta_{{l{\text{P}}_{3} }}^{{{\text{tr}}}} + B_{2}^{{{\rm I}{\rm I}}} \delta_{{g{\text{P}}_{3} }}^{{{\text{tr}}}} } \right)k_{{{\text{P}}_{3} }}^{{{\text{tr2}}}} \hfill \\ f_{17} = - 2\mu^{\rm I} l_{{\text{S}}}^{{{\text{re}}}} n_{{\text{S}}}^{{{\text{re}}}} k_{{\text{S}}}^{{{\text{re2}}}} ,f_{18} = - 2\mu^{{{\rm I}{\rm I}}} l_{{\text{S}}}^{{{\text{tr}}}} n_{{\text{S}}}^{{{\text{tr}}}} k_{{\text{S}}}^{{{\text{tr2}}}} \hfill \\ \end{gathered} \right\},$$
$$\left. \begin{gathered} f_{21} = - 2\mu^{\rm I} l_{{{\text{P}}_{1} }}^{{{\text{re}}}} n_{{{\text{P}}_{1} }}^{{{\text{re}}}} k_{{{\text{P}}_{1} }}^{{{\text{re2}}}} ,f_{22} = - 2\mu^{\rm I} l_{{{\text{P}}_{2} }}^{{{\text{re}}}} n_{{{\text{P}}_{2} }}^{{{\text{re}}}} k_{{{\text{P}}_{2} }}^{{{\text{re2}}}} ,f_{23} = - 2\mu^{\rm I} l_{{{\text{P}}_{3} }}^{{{\text{re}}}} n_{{{\text{P}}_{3} }}^{{{\text{re}}}} k_{{{\text{P}}_{3} }}^{{{\text{re2}}}} ,f_{24} = - 2\mu^{{{\rm I}{\rm I}}} l_{{{\text{P}}_{1} }}^{{{\text{tr}}}} n_{{{\text{P}}_{1} }}^{{{\text{tr}}}} k_{{{\text{P}}_{1} }}^{{{\text{tr2}}}} \hfill \\ f_{25} = - 2\mu^{{{\rm I}{\rm I}}} l_{{{\text{P}}_{2} }}^{{{\text{tr}}}} n_{{{\text{P}}_{2} }}^{{{\text{tr}}}} k_{{{\text{P}}_{2} }}^{{{\text{tr2}}}} ,f_{26} = - 2\mu^{{{\rm I}{\rm I}}} l_{{{\text{P}}_{3} }}^{{{\text{tr}}}} n_{{{\text{P}}_{3} }}^{{{\text{tr}}}} k_{{{\text{P}}_{3} }}^{{{\text{tr2}}}} ,f_{27} = \mu^{\rm I} \left( {n_{{\text{S}}}^{{{\text{re2}}}} - l_{{\text{S}}}^{{{\text{re2}}}} } \right)k_{{\text{S}}}^{{{\text{re2}}}} ,f_{28} = \mu^{{{\rm I}{\rm I}}} \left( {l_{{\text{S}}}^{{{\text{tr2}}}} - n_{{\text{S}}}^{{{\text{tr2}}}} } \right)k_{{\text{S}}}^{{{\text{tr2}}}} \hfill \\ \end{gathered} \right\},$$
$$f_{31} = n_{{{\text{P}}_{1} }}^{{{\text{re}}}} k_{{{\text{P}}_{1} }}^{{{\text{re}}}} ,f_{32} = n_{{{\text{P}}_{2} }}^{{{\text{re}}}} k_{{{\text{P}}_{2} }}^{{{\text{re}}}} ,f_{33} = n_{{{\text{P}}_{3} }}^{{{\text{re}}}} k_{{{\text{P}}_{3} }}^{{{\text{re}}}} ,f_{34} = n_{{{\text{P}}_{1} }}^{{{\text{tr}}}} k_{{{\text{P}}_{1} }}^{{{\text{tr}}}} ,f_{35} = n_{{{\text{P}}_{2} }}^{{{\text{tr}}}} k_{{{\text{P}}_{2} }}^{{{\text{tr}}}} ,f_{36} = n_{{{\text{P}}_{3} }}^{{{\text{tr}}}} k_{{{\text{P}}_{3} }}^{{{\text{tr}}}} ,f_{37} = l_{{\text{S}}}^{{{\text{re}}}} k_{{\text{S}}}^{{{\text{re}}}} ,f_{38} = - l_{{\text{S}}}^{{{\text{tr}}}} k_{{\text{S}}}^{{{\text{tr}}}} ,$$
$$f_{41} = l_{{{\text{P}}_{1} }}^{{{\text{re}}}} k_{{{\text{P}}_{1} }}^{{{\text{re}}}} ,f_{42} = l_{{{\text{P}}_{2} }}^{{{\text{re}}}} k_{{{\text{P}}_{2} }}^{{{\text{re}}}} ,f_{43} = l_{{{\text{P}}_{3} }}^{{{\text{re}}}} k_{{{\text{P}}_{3} }}^{{{\text{re}}}} ,f_{44} = - l_{{{\text{P}}_{1} }}^{{{\text{tr}}}} k_{{{\text{P}}_{1} }}^{{{\text{tr}}}} ,f_{45} = - l_{{{\text{P}}_{2} }}^{{{\text{tr}}}} k_{{{\text{P}}_{2} }}^{{{\text{tr}}}} ,f_{46} = - l_{{{\text{P}}_{3} }}^{{{\text{tr}}}} k_{{{\text{P}}_{3} }}^{{{\text{tr}}}} ,f_{47} = - n_{{\text{S}}}^{{{\text{re}}}} k_{{\text{S}}}^{{{\text{re}}}} ,f_{48} = - n_{{\text{S}}}^{{{\text{tr}}}} k_{{\text{S}}}^{{{\text{tr}}}} ,$$
$$f_{51} = n_{{{\text{P}}_{1} }}^{{{\text{re}}}} \delta_{{l{\text{P}}_{1} }}^{{{\text{re}}}} k_{{{\text{P}}_{1} }}^{{{\text{re}}}} ,f_{52} = n_{{{\text{P}}_{2} }}^{{{\text{re}}}} \delta_{{l{\text{P}}_{2} }}^{{{\text{re}}}} k_{{{\text{P}}_{2} }}^{{{\text{re}}}} ,f_{53} = n_{{{\text{P}}_{3} }}^{{{\text{re}}}} \delta_{{l{\text{P}}_{3} }}^{{{\text{re}}}} k_{{{\text{P}}_{3} }}^{{{\text{re}}}} ,f_{54} = f_{55} = f_{56} = 0,f_{57} = l_{{\text{S}}}^{{{\text{re}}}} \delta_{l}^{{{\text{re}}}} k_{{\text{S}}}^{{{\text{re}}}} ,f_{58} = 0,$$
$$f_{61} = n_{{{\text{P}}_{1} }}^{{{\text{re}}}} \delta_{{g{\text{P}}_{1} }}^{{{\text{re}}}} k_{{{\text{P}}_{1} }}^{{{\text{re}}}} ,f_{62} = n_{{{\text{P}}_{2} }}^{{{\text{re}}}} \delta_{{g{\text{P}}_{2} }}^{{{\text{re}}}} k_{{{\text{P}}_{2} }}^{{{\text{re}}}} ,f_{63} = n_{{{\text{P}}_{3} }}^{{{\text{re}}}} \delta_{{g{\text{P}}_{3} }}^{{{\text{re}}}} k_{{{\text{P}}_{3} }}^{{{\text{re}}}} ,f_{64} = f_{65} = f_{66} = 0,f_{67} = l_{{\text{S}}}^{{{\text{re}}}} \delta_{g}^{{{\text{re}}}} k_{{\text{S}}}^{{{\text{re}}}} ,f_{68} = 0,$$
$$f_{71} = f_{72} = f_{73} = 0,f_{74} = - n_{{{\text{P}}_{1} }}^{{{\text{tr}}}} \delta_{{l{\text{P}}_{1} }}^{{{\text{tr}}}} k_{{{\text{P}}_{1} }}^{{{\text{tr}}}} ,f_{75} = - n_{{{\text{P}}_{2} }}^{{{\text{tr}}}} \delta_{{l{\text{P}}_{2} }}^{{{\text{tr}}}} k_{{{\text{P}}_{2} }}^{{{\text{tr}}}} f_{76} = - n_{{{\text{P}}_{3} }}^{{{\text{tr}}}} \delta_{{l{\text{P}}_{3} }}^{{{\text{tr}}}} k_{{{\text{P}}_{3} }}^{{{\text{tr}}}} ,f_{77} = 0,f_{78} = l_{{\text{S}}}^{{{\text{tr}}}} \delta_{l}^{{{\text{tr}}}} k_{{\text{S}}}^{{{\text{tr}}}} ,$$
$$f_{81} = f_{82} = f_{83} = 0,f_{84} = - n_{{{\text{P}}_{1} }}^{{{\text{tr}}}} \delta_{{g{\text{P}}_{1} }}^{{{\text{tr}}}} k_{{{\text{P}}_{1} }}^{{{\text{tr}}}} ,f_{85} = - n_{{{\text{P}}_{2} }}^{{{\text{tr}}}} \delta_{{g{\text{P}}_{2} }}^{{{\text{tr}}}} k_{{{\text{P}}_{2} }}^{{{\text{tr}}}} ,f_{86} = - n_{{{\text{P}}_{3} }}^{{{\text{tr}}}} \delta_{{g{\text{P}}_{3} }}^{{{\text{tr}}}} k_{{{\text{P}}_{3} }}^{{{\text{tr}}}} ,f_{87} = 0,f_{88} = l_{{\text{S}}}^{{{\text{tr}}}} \delta_{g}^{{{\text{tr}}}} k_{{\text{S}}}^{{{\text{tr}}}} ,$$
$$\left. \begin{gathered} g_{1} = \left( {\lambda_{c}^{\rm I} + 2\mu^{\rm I} n_{{{\text{P}}_{{1}} }}^{{{\text{in2}}}} + B_{1}^{\rm I} \delta_{{l{\text{P}}_{1} }}^{{{\text{in}}}} + B_{2}^{\rm I} \delta_{{{\text{P}}_{1} }}^{{{\text{in2}}}} } \right)k_{{{\text{P}}_{1} }}^{{{\text{in2}}}} g_{2} = - 2\mu^{\rm I} l_{{{\text{P}}_{1} }}^{{{\text{in}}}} n_{{{\text{P}}_{{1}} }}^{{{\text{in}}}} k_{{{\text{P}}_{1} }}^{{{\text{in2}}}} ,g_{3} = n_{{{\text{P}}_{{1}} }}^{{{\text{in}}}} k_{{{\text{P}}_{1} }}^{{{\text{in}}}} \hfill \\ g_{4} = - l_{{{\text{P}}_{1} }}^{{{\text{in}}}} k_{{{\text{P}}_{1} }}^{{{\text{in}}}} ,g_{5} = n_{{{\text{P}}_{{1}} }}^{{{\text{in}}}} \delta_{{l{\text{P}}_{1} }}^{{{\text{in}}}} k_{{{\text{P}}_{1} }}^{{{\text{in}}}} ,g_{6} = n_{{{\text{P}}_{{1}} }}^{{{\text{in}}}} \delta_{{g{\text{P}}_{1} }}^{{{\text{in}}}} k_{{{\text{P}}_{1} }}^{{{\text{in}}}} ,g_{7} = g_{8} = 0 \hfill \\ \end{gathered} \right\}.$$

Appendix 4

The expression of each element in Eq. (19)

$$\left. \begin{gathered} \sigma_{33}^{{rP_{1} }} = - \left( {\lambda {}_{c}^{{\text{I}}} + 2\mu^{{\text{I}}} n_{{P_{1} }}^{re2} + B_{1}^{{\text{I}}} \delta_{{lP_{1} }}^{re} + B_{2}^{{\text{I}}} \delta_{{gP_{1} }}^{re} } \right)k_{{P_{1} }}^{re2} A_{{sP_{1} }}^{re} ,\sigma_{33}^{{rP_{2} }} = - \left( {\lambda {}_{c}^{{\text{I}}} + 2\mu^{{\text{I}}} n_{{P_{2} }}^{re2} + B_{1}^{{\text{I}}} \delta_{{lP_{2} }}^{re} + B_{2}^{{\text{I}}} \delta_{{gP_{2} }}^{re} } \right)k_{{P_{2} }}^{re2} A_{{sP_{2} }}^{re} \hfill \\ \sigma_{33}^{{rP_{3} }} = - \left( {\lambda {}_{c}^{{\text{I}}} + 2\mu^{{\text{I}}} n_{{P_{3} }}^{re2} + B_{1}^{{\text{I}}} \delta_{{lP_{3} }}^{re} + B_{2}^{{\text{I}}} \delta_{{gP_{3} }}^{re} } \right)k_{{P_{3} }}^{re2} A_{{sP_{3} }}^{re} ,\sigma_{33}^{iS} = 2\mu^{{\text{I}}} l_{S}^{in} n_{S}^{in} k_{S}^{in2} {\mathbf{B}}_{s}^{in} ,\sigma_{33}^{rS} = - 2\mu^{{\text{I}}} l_{S}^{re} n_{S}^{re} k_{S}^{re2} {\mathbf{B}}_{s}^{re} \hfill \\ \end{gathered} \right\},$$
$$\left. \begin{gathered} \sigma_{13}^{{{\text{I}}\left( {iS} \right)}} = \mu^{{\text{I}}} \left( {n_{S}^{in2} - l_{S}^{in2} } \right)k_{S}^{in2} B_{s}^{in} ,\sigma_{13}^{{{\text{I}}\left( {rP_{1} } \right)}} = - 2\mu^{{\text{I}}} l_{{P_{1} }}^{re} n_{{P_{1} }}^{re} k_{{P_{1} }}^{re2} A_{{sP_{1} }}^{re} ,\sigma_{13}^{{{\text{I}}\left( {rP_{2} } \right)}} = - 2\mu^{{\text{I}}} l_{{P_{2} }}^{re} n_{{P_{2} }}^{re} k_{{P_{2} }}^{re2} A_{{sP_{2} }}^{re} \hfill \\ \sigma_{13}^{{{\text{I}}\left( {rP_{3} } \right)}} = - 2\mu^{{\text{I}}} l_{{P_{3} }}^{re} n_{{P_{3} }}^{re} k_{{P_{3} }}^{re2} A_{{sP_{3} }}^{re} \sigma_{13}^{{{\rm I}\left( {rS} \right)}} = \mu^{{\text{I}}} \left( {n_{S}^{re2} - l_{S}^{re2} } \right)k_{S}^{re2} {\mathbf{B}}_{s}^{re} \hfill \\ \end{gathered} \right\},$$
$$\left. \begin{gathered} p_{l}^{{rP_{1} }} = \left( {a_{11} + a_{12} \delta_{{lP_{1} }}^{re} + a_{13} \delta_{{gP_{1} }}^{re} } \right)k_{{P_{1} }}^{re2} A_{{sP_{1} }}^{re} ,p_{l}^{{rP_{2} }} = \left( {a_{11} + a_{12} \delta_{{lP_{2} }}^{re} + a_{13} \delta_{{gP_{2} }}^{re} } \right)k_{{P_{2} }}^{re2} A_{{sP_{2} }}^{re} ,p_{l}^{iS} = 0 \hfill \\ p_{l}^{{rP_{3} }} = \left( {a_{11} + a_{12} \delta_{{lP_{3} }}^{re} + a_{13} \delta_{{gP_{3} }}^{re} } \right)k_{{P_{3} }}^{re2} A_{{sP_{3} }}^{re} ,p_{l}^{rS} = 0 \hfill \\ \end{gathered} \right\},$$
$$\left. \begin{gathered} p_{g}^{{rP_{1} }} = \left( {a_{21} + a_{22} \delta_{{lP_{1} }}^{re} + a_{23} \delta_{{gP_{1} }}^{re} } \right)k_{{P_{1} }}^{re2} A_{{sP_{1} }}^{re} ,p_{g}^{{rP_{2} }} = \left( {a_{21} + a_{22} \delta_{{lP_{2} }}^{re} + a_{23} \delta_{{gP_{2} }}^{re} } \right)k_{{P_{2} }}^{re2} A_{{sP_{2} }}^{re} ,p_{g}^{iS} = 0 \hfill \\ p_{g}^{{rP_{3} }} = \left( {a_{21} + a_{22} \delta_{{lP_{3} }}^{re} + a_{23} \delta_{{gP_{3} }}^{re} } \right)k_{{P_{3} }}^{re2} A_{{sP_{3} }}^{re} ,p_{g}^{rS} = 0 \hfill \\ \end{gathered} \right\},$$
$$\dot{u}_{3s}^{iS} = l_{S}^{in} v_{S}^{in} k_{S}^{in2} {\mathbf{B}}_{s}^{in} ,\dot{u}_{3s}^{{rP_{1} }} = n_{{P_{1} }}^{re} v_{{P_{1} }}^{re} k_{{P_{1} }}^{re2} A_{{sP_{1} }}^{re} ,\dot{u}_{3s}^{{rP_{2} }} = n_{{P_{2} }}^{re} v_{{P_{2} }}^{re} k_{{P_{2} }}^{re2} A_{{sP_{2} }}^{re} ,\dot{u}_{3s}^{{rP_{3} }} = n_{{P_{3} }}^{re} v_{{P_{3} }}^{re} k_{{P_{3} }}^{re2} A_{{sP_{3} }}^{re} ,\dot{u}_{3s}^{rS} = l_{S}^{re} v_{S}^{re} k_{S}^{re2} {\mathbf{B}}_{s}^{re} ,$$
$$\dot{u}_{1s}^{iS} = n_{S}^{in} v_{S}^{in} k_{S}^{in2} {\mathbf{B}}_{s}^{in} ,\dot{u}_{1s}^{{rP_{1} }} = l_{{P_{1} }}^{re} v_{{P_{1} }}^{re} k_{{P_{1} }}^{re2} A_{{sP_{1} }}^{re} ,\dot{u}_{1s}^{{rP_{2} }} = l_{{P_{2} }}^{re} v_{{P_{2} }}^{re} k_{{P_{2} }}^{re2} A_{{sP_{2} }}^{re} ,\dot{u}_{1s}^{{rP_{3} }} = l_{{P_{3} }}^{re} v_{{P_{3} }}^{re} k_{{P_{3} }}^{re2} A_{{sP_{3} }}^{re} ,\dot{u}_{1s}^{rS} = - n_{S}^{re} v_{S}^{re} k_{S}^{re2} {\mathbf{B}}_{s}^{re} ,$$
$$\left. \begin{gathered} \dot{u}_{3l}^{iS} = l_{S}^{in} v_{S}^{in} k_{S}^{in2} \delta_{ls}^{re} {\mathbf{B}}_{s}^{in} ,\dot{u}_{3l}^{{rP_{1} }} = n_{{P_{1} }}^{re} v_{{P_{1} }}^{re} k_{{P_{1} }}^{re2} \delta_{{lP_{1} }}^{re} A_{{sP_{1} }}^{re} ,\dot{u}_{3l}^{{rP_{2} }} = n_{{P_{2} }}^{re} v_{{P_{2} }}^{re} k_{{P_{2} }}^{re2} \delta_{{lP_{2} }}^{re} A_{{sP_{2} }}^{re} ,\dot{u}_{3l}^{{rP_{3} }} = n_{{P_{3} }}^{re} v_{{P_{3} }}^{re} k_{{P_{3} }}^{re2} \delta_{{lP_{3} }}^{re} A_{{sP_{3} }}^{re} \hfill \\ \dot{u}_{3l}^{rS} = l_{S}^{re} v_{S}^{re} k_{S}^{re2} \delta_{ls}^{re} {\mathbf{B}}_{s}^{re} \hfill \\ \end{gathered} \right\},$$
$$\left. \begin{gathered} \dot{u}_{3g}^{iS} = l_{S}^{in} v_{S}^{in} k_{S}^{in2} \delta_{gs}^{re} {\mathbf{B}}_{s}^{in} ,\dot{u}_{3g}^{{rP_{1} }} = n_{{P_{1} }}^{re} v_{{P_{1} }}^{re2} k_{{P_{1} }}^{2} \delta_{{gP_{1} }}^{re} A_{{sP_{1} }}^{re} ,\dot{u}_{3g}^{{rP_{2} }} = n_{{P_{2} }}^{re} v_{{P_{2} }}^{re} k_{{P_{2} }}^{re2} \delta_{{gP_{2} }}^{re} A_{{sP_{2} }}^{re} ,\dot{u}_{3g}^{{rP_{3} }} = n_{{P_{3} }}^{re} v_{{P_{3} }}^{re} k_{{P_{3} }}^{re2} \delta_{{lP_{3} }}^{re} A_{{gP_{3} }}^{re} \hfill \\ \dot{u}_{3g}^{rS} = l_{S}^{re} v_{S}^{re} k_{S}^{re2} \delta_{gs}^{re} {\mathbf{B}}_{s}^{re} \hfill \\ \end{gathered} \right\}.$$

Appendix 5

The expression of each element in Eq. (22)

$$\left. \begin{gathered} \sigma_{33}^{{{\text{II}}\left( {tP_{1} } \right)}} = - \left( {\lambda_{c}^{{{\text{II}}}} + 2\mu^{{{\text{II}}}} n_{{P_{1} }}^{tr2} + B_{{_{1} }}^{{{\text{II}}}} \delta_{{lP_{1} }}^{tr} + B_{2}^{{{\text{II}}}} \delta_{{gP_{1} }}^{tr} } \right)k_{{P_{1} }}^{tr2} A_{{sP_{1} }}^{tr} ,\sigma_{33}^{{{\text{II}}\left( {tP_{2} } \right)}} = - \left( {\lambda_{c}^{{{\text{II}}}} + 2\mu^{{{\text{II}}}} n_{{P_{2} }}^{tr2} + B_{{_{1} }}^{{{\text{II}}}} \delta_{{lP_{2} }}^{tr} + B_{2}^{{{\text{II}}}} \delta_{{gP_{2} }}^{tr} } \right)k_{{P_{2} }}^{tr2} A_{{sP_{2} }}^{tr} \hfill \\ \sigma_{33}^{{{\text{II}}\left( {tP_{3} } \right)}} = - \left( {\lambda_{c}^{{{\text{II}}}} + 2\mu^{{{\text{II}}}} n_{{P_{3} }}^{tr2} + B_{{_{1} }}^{{{\text{II}}}} \delta_{{lP_{3} }}^{tr} + B_{2}^{{{\text{II}}}} \delta_{{gP_{3} }}^{tr} } \right)k_{{P_{3} }}^{tr2} A_{{sP_{3} }}^{tr} ,\sigma_{33}^{{{\text{II}}\left( {tS} \right)}} = 2\mu^{{{\text{II}}}} l_{S}^{tr} n_{S}^{tr} k_{S}^{tr2} {\mathbf{B}}_{s}^{tr} \hfill \\ \end{gathered} \right\},$$
$$\sigma_{13}^{{{\text{II}}\left( {tP_{1} } \right)}} = 2\mu^{{{\text{II}}}} l_{{P_{1} }}^{tr} n_{{P_{1} }}^{tr} k_{{P_{1} }}^{tr2} A_{{sP_{1} }}^{tr} ,\sigma_{13}^{{{\text{II}}\left( {tP_{2} } \right)}} = 2\mu^{{{\text{II}}}} l_{{P_{2} }}^{tr} n_{{P_{2} }}^{tr} k_{{P_{2} }}^{tr2} A_{{sP_{2} }}^{tr} \sigma_{13}^{{{\text{II}}\left( {tP_{3} } \right)}} = 2\mu^{{{\text{II}}}} l_{{P_{3} }}^{tr} n_{{P_{3} }}^{tr} k_{{P_{3} }}^{tr2} A_{{sP_{3} }}^{tr} ,\sigma_{13}^{{{\text{II}}\left( {tS} \right)}} = \mu^{{{\text{II}}}} \left( {n_{S}^{tr2} - l_{S}^{tr2} } \right)k_{S}^{tr2} {\mathbf{B}}_{s}^{tr} ,$$
$$\left. \begin{gathered} p_{l}^{{tP_{1} }} = \left( {a_{11} + a_{12} \delta_{{lP_{1} }}^{tr} + a_{13} \delta_{{gP_{1} }}^{tr} } \right)k_{{P_{1} }}^{tr2} A_{{sP_{1} }}^{tr} ,p_{l}^{{tP_{2} }} = \left( {a_{11} + a_{12} \delta_{{lP_{2} }}^{tr} + a_{13} \delta_{{gP_{2} }}^{tr} } \right)k_{{P_{2} }}^{tr2} A_{{sP_{2} }}^{tr} \hfill \\ p_{l}^{{tP_{3} }} = \left( {a_{11} + a_{12} \delta_{{lP_{3} }}^{tr} + a_{13} \delta_{{gP_{3} }}^{tr} } \right)k_{{P_{3} }}^{tr2} A_{{sP_{3} }}^{tr} ,p_{l}^{tS} = 0 \hfill \\ \end{gathered} \right\},$$
$$\left. \begin{gathered} p_{g}^{{tP_{1} }} = \left( {a_{21} + a_{22} \delta_{{lP_{1} }}^{tr} + a_{23} \delta_{{gP_{1} }}^{tr} } \right)k_{{P_{1} }}^{tr2} A_{{sP_{1} }}^{tr} ,p_{g}^{{tP_{2} }} = \left( {a_{21} + a_{22} \delta_{{lP_{2} }}^{tr} + a_{23} \delta_{{gP_{2} }}^{tr} } \right)k_{{P_{2} }}^{tr2} A_{{sP_{2} }}^{tr} \hfill \\ p_{g}^{{tP_{3} }} = \left( {a_{21} + a_{22} \delta_{{lP_{3} }}^{tr} + a_{23} \delta_{{gP_{3} }}^{tr} } \right)k_{{P_{3} }}^{tr2} A_{{sP_{3} }}^{tr} ,p_{g}^{tS} = 0 \hfill \\ \end{gathered} \right\},$$
$$\dot{u}_{1s}^{{tP_{1} }} = l_{{P_{1} }}^{tr} v_{{P_{1} }}^{tr} k_{{P_{1} }}^{tr2} A_{{sP_{1} }}^{tr} ,\dot{u}_{1s}^{{tP_{2} }} = l_{{P_{2} }}^{tr} v_{{P_{2} }}^{tr} k_{{P_{2} }}^{tr2} A_{{sP_{2} }}^{tr} ,\dot{u}_{1s}^{{tP_{3} }} = l_{{P_{3} }}^{tr} v_{{P_{3} }}^{tr} k_{{P_{3} }}^{tr2} A_{{sP_{3} }}^{tr} ,\dot{u}_{1s}^{tS} = n_{S}^{tr} v_{S}^{tr} k_{S}^{tr2} {\mathbf{\rm B}}_{s}^{tr} ,$$
$$\dot{u}_{3s}^{{tP_{1} }} = - n_{{P_{1} }}^{tr} v_{{P_{1} }}^{tr} k_{{P_{1} }}^{tr2} A_{{sP_{1} }}^{tr} ,\dot{u}_{3s}^{{tP_{2} }} = - n_{{P_{2} }}^{tr} v_{{P_{2} }}^{tr} k_{{P_{2} }}^{tr2} A_{{sP_{2} }}^{tr} ,\dot{u}_{3s}^{{tP_{3} }} = - n_{{P_{3} }}^{tr} v_{{P_{3} }}^{tr} k_{{P_{3} }}^{tr2} A_{{sP_{3} }}^{tr} ,\dot{u}_{3s}^{tS} = l_{S}^{re} v_{S}^{tr} k_{S}^{tr2} {\mathbf{B}}_{s}^{tr} ,$$
$$\dot{u}_{3l}^{{tP_{1} }} = - n_{{P_{1} }}^{tr} v_{{P_{1} }}^{tr} k_{{P_{1} }}^{tr2} \delta_{{lP_{1} }}^{tr} A_{{sP_{1} }}^{tr} ,\dot{u}_{3l}^{{tP_{2} }} = - n_{{P_{2} }}^{tr} v_{{P_{2} }}^{tr} k_{{P_{2} }}^{tr2} \delta_{{lP_{2} }}^{tr} A_{{sP_{2} }}^{tr} ,\dot{u}_{3l}^{{tP_{3} }} = - n_{{P_{3} }}^{tr} v_{{P_{3} }}^{tr} k_{{P_{3} }}^{tr2} \delta_{{lP_{3} }}^{tr} A_{{sP_{3} }}^{tr} ,\dot{u}_{3l}^{tS} = l_{S}^{tr} v_{S}^{tr} k_{S}^{tr2} \delta_{ls}^{tr} {\mathbf{B}}_{s}^{tr} ,$$
$$\dot{u}_{3g}^{{tP_{1} }} = - n_{{P_{1} }}^{tr} v_{{P_{1} }}^{tr} k_{{P_{1} }}^{tr2} \delta_{{gP_{1} }}^{tr} A_{{sP_{1} }}^{tr} ,\dot{u}_{3g}^{{tP_{2} }} = - n_{{P_{2} }}^{tr} v_{{P_{2} }}^{tr} k_{{P_{2} }}^{tr2} \delta_{{gP_{2} }}^{tr} A_{{sP_{2} }}^{tr} ,\dot{u}_{3g}^{{tP_{3} }} = - n_{{P_{3} }}^{tr} v_{{P_{3} }}^{tr} k_{{P_{3} }}^{tr2} \delta_{{gP_{3} }}^{tr} A_{{sP_{3} }}^{tr} ,\dot{u}_{3g}^{tS} = l_{S}^{tr} v_{S}^{tr} k_{S}^{tr2} \delta_{gs}^{tr} {\mathbf{B}}_{s}^{tr} .$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Zhou, F., Liu, H. et al. Energy Characteristics of Reflection and Transmission for SV-Waves at the Interface of Layered Unsaturated Soils. J. Vib. Eng. Technol. 12, 4541–4559 (2024). https://doi.org/10.1007/s42417-023-01136-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-01136-8

Keywords

Navigation