Skip to main content
Log in

Dynamic Multifractality of Seismic Activity in Northeast India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In recent years, the study of earthquakes has proven to be of great interest, particularly to understand the hidden processes underlying earthquake generation. The multifractal characteristics of frequency–time series of earthquakes of magnitude M ≥ 3 and M ≥ 4 that occurred in Northeast India (NEI) from January 1973 to December 2016 are studied in the present work. The Hurst exponent calculated for the NEI earthquake data is larger than 0.5, presenting long-range correlations and persistent behavior. In the present study, multifractal detrended fluctuation analysis (MFDFA) is used to study the multifractal properties of the data. The results show different shapes of multifractal spectra and corresponding distinct properties. This indicates that the degree of multifractality exhibits strong variation with time, which is associated with the dynamic evolution of earthquake activity in this region. The singularity spectrum is left-skewed and shows a long left tail, suggesting that the multifractal structures are sensitive to local fluctuations of large numbers of events. The singularity spectra of the four blocks of NEI also show a long left tail but with different width of the spectrum, indicating variation in the strength of multifractality in different blocks of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki, K. (1987). Magnitude–frequency relation for small earthquakes: A clue to the origin of fmax of large earthquakes. Journal of Geophysical Research, 92, 1349–1355.

    Article  Google Scholar 

  • Bettinelli, P., Avouac, J.-P., Flouzat, M., Bollinger, L., Ramillien, G., Rajaure, S., & Sapkota, S. (2008). Seasonal variations of seismicity and geodetic strain in the imalaya induced by surface hydrology. Earth and Planetary Science Letters, 266, 332–344. https://doi.org/10.1016/j.epsl.2007.11.021.

    Article  Google Scholar 

  • Bhattacharya, P. M., & Kayal, J. R. (2003). Mapping the b-value and its correlation with the fractal dimension in the northeast region of India. Geological Society of India, 62(6), 680–695.

    Google Scholar 

  • Bhattacharya, P. M., Kayal, J. R., Baruah, S., & Arefiev, S. S. (2010). Earthquake source zones in northeast India: seismic tomography, fractal dimension and b value mapping. Pure and Applied Geophysics, 167(8–9), 999–1012.

    Article  Google Scholar 

  • Bollinger, L., Avouac, J. P., Cattin, R., & Pandey, M. R. (2004). Stress buildup in the Himalaya. Journal of Geophysical Research, 109, B11405. https://doi.org/10.1029/2003JB002911.

    Google Scholar 

  • Bollinger, L., Perrier, F., Avouac, J.-P., Sapkota, S., Gautam, U., & Tiwari, D. R. (2007). Seasonal modulation of seismicity in the Himalaya of Nepal. Geophysical Research Letters, 34, L08304. https://doi.org/10.1029/2006GL029192.

    Article  Google Scholar 

  • Christiansen, L. B., Hurwitz, S., & Inge-britsen, S. (2007). Annual modulation of seismicity along the San Andreas Fault near Parkfield, CA. Geophysical Research Letters, 34, L04306. https://doi.org/10.1029/2006GL028634.

    Article  Google Scholar 

  • Costain, J. K., & Bollinger, G. A. (1996). Climatic changes, streamflow, and long-term forecasting of intraplate seismicity. Journal of Geodynamics, 22, 97–117.

    Article  Google Scholar 

  • Enescu, B., Ito, K., & Struzik, Z. R. (2006). Wavelet-based multiscale resolution analysis of real and simulated time-series of earthquakes. Geophysical Journal International, 164(1), 63–74.

    Article  Google Scholar 

  • Esteller, R., Vachtsevanos, G., Echauz, J., & Litt, B. (2001). A comparison of waveform fractal dimension algorithms. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(2), 177–183.

    Article  Google Scholar 

  • Feder, J. (1988). Fractals. New York: Plenum.

    Book  Google Scholar 

  • Gadano, C., Alonzo, M. L., & Vilardo, G. (1997). Multifractal approach to time clustering of earthquakes, application to Mt. Vesuvio seismicity, Pure and Applied Geophysics, 149, 375–390.

    Article  Google Scholar 

  • Gao, S. S., Silver, P. G., Linde, A. T., & Sacks, I. S. (2000). Annual modulation of triggered seismicity following the 1992 Landers earthquake in California. Nature, 406, 500–504.

    Article  Google Scholar 

  • Godano, C., & Caruso, V. (1995). Multifractal analysis of earthquake catalogues. Geophysical Journal International, 121(2), 385–392.

    Article  Google Scholar 

  • Grapenthin, R., Sigmundsson, F., Geirsson, H., Árnadóttir, T., & Pinel, V. (2006). Icelandic rhythmics: annual modulation of land elevation and plate spreading by snow load. Geophysical Research Letters, 33, L24305.

    Article  Google Scholar 

  • Gutenberg, R., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of Seismological Society of America, 34, 185–188.

    Google Scholar 

  • Gupta, H. K., Rajendran, K., & Singh, H. N. (1986). Seismicity of the Northeast Indian Region. Journal of the Geological Society of India, 28, 345–365.

    Google Scholar 

  • Hainzl, S., Kraft, T., Wassermann, J., Igel, H., & Schmedes, E. (2006). Evidence for rainfall-triggered earthquake activity. Geophysical Research Letters, 33, L19303. https://doi.org/10.1029/2006GL027642.

    Article  Google Scholar 

  • Heki, K. (2003). Snow load and seasonal variation of earthquake occurrence in Japan. Earth and Planetary Science Letters, 207, 159–164.

    Article  Google Scholar 

  • Helmstetter, A., & Sornette, D. (2003). Foreshocks explained by cascades of triggered seismicity. Journal of Geophysical Research: Solid Earth, 108(B10), 2457.

    Google Scholar 

  • Higuchi, T. (1988). Approach to an irregular time series on the basis of fractal theory. Physica D: Nonlinear Phenomena, 31, 277–283.

    Article  Google Scholar 

  • Hirata, T. (1989). A correlation between the b-value and the fractal dimension of earthquakes. Journal of Geophysical Research: Solid Earth, 94, 7507–7514.

    Article  Google Scholar 

  • Huc, M., & Main, I. G. (2003). Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality. Journal of Geophysical Research: Solid Earth, 108(B7), 2324.

    Article  Google Scholar 

  • Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770–808.

    Google Scholar 

  • Idziak, A., & Teper, L. (1996). Fractal dimension of faults network in the upper Silesian coal basin (Poland): Preliminary studies. Pure and Applied Geophysics, 147(2), 239–247.

    Article  Google Scholar 

  • Ihlen, E. A. (2012). Introduction to multifractal detrended fluctuation analysis in matlab. Frontiers in Physiology. https://doi.org/10.3389/fphys2012.00141.

    Google Scholar 

  • Kagan, Y. Y., & Knopoff, L. (1980). Spatial distribution of earthquakes: The two-point correlation function. Geophysical Journal International, 62, 303–320.

    Article  Google Scholar 

  • Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. A. A., Havlin, S., & Bunde A. (2001). Detecting long-range correlation with detrended fluctuation analysis. Physica A, 295, 441–454.

    Article  Google Scholar 

  • Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and Its Applications, 316(1), 87–114.

    Article  Google Scholar 

  • Katz, M. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18, 145–156.

    Article  Google Scholar 

  • Kayal, J. R. (1996). Earthquake source process in northeast India: A review. Journal of Himalayan Geology, 17, 53–69.

    Google Scholar 

  • Kayal, J. R. (2001). Microearthquake activity in some parts of the Himalaya and the tectonic model. Tectonophysics, 339, 331–351.

    Article  Google Scholar 

  • Kayal, J. R., & Banerjee, B. (1988). Anomalous behaviour of the precursor resistivity in the Shillong area, Northeast India. Geophysics Journal International, 94, 97–103.

    Article  Google Scholar 

  • King, G. (1983). The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault system: The geometrical origin of b-value. Pure and Applied Geophysics, 121, 761–815.

    Article  Google Scholar 

  • Main, I. G. (1996). Statistical physics, seismogenesis, and seismic hazard. Reviews of Geophysics, 34, 433–462.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature (2nd ed.). San Francisco: W. H. Freeman.

    Google Scholar 

  • Mandelbrot, B., & Wallis, J. R. (1969). Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resources Research, 5, 967–988.

    Article  Google Scholar 

  • McCloskey, J. (1993). A hierarchical model for earthquake generation on coupled segments of a transform fault. Geophysical Journal International, 115(2), 538–551.

    Article  Google Scholar 

  • Michas, G., Sammonds, P., & Vallianatos, F. (2014). Dynamic multifractality in earthquake time series: Insights from the Corinth rift, Greece. Pure and Applied Geophysics, 172(7), 1909–1921.

    Article  Google Scholar 

  • Michas, G., Vallianatos, F., & Sammonds, P. (2013). Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlinear Processes in Geophysics, 20(5), 713–724.

    Article  Google Scholar 

  • Nakaya, S., & Hashimoto, T. (2002). Temporal variation of multifractal properties of seismicity in the region affected by the mainshock of the October 6, 2000 Western Tottori Prefecture, Japan, earthquake (M = 7.3). Geophysical Research Letters, 29, 133–141.

    Article  Google Scholar 

  • Ogata, Y. (1983). Likelihood analysis of point processes and its application to seismological data. Bulletin of the International Statistical Institute, 50(2), 943–961.

    Google Scholar 

  • Oike, K. (1978). On the relation between rainfall and the occurrence of earthquakes. Disaster Prevention Research Institute, 20B–1, 35–45.

    Google Scholar 

  • Oncel, A. O., & Wilson, T. H. (2002). Space-time correlations of seismotectonic parameters: Example from Japan and from Turkey preceding the Izmith earthquake. Bulletin of the Seismological Society of America, 92, 339–349.

    Article  Google Scholar 

  • Oncel, A. O., & Wilson, T. (2006). Evaluation of earthquake potential along the northern Anatolian Fault zone in the Marmara Sea using comparisons of 160 GPS strain and seismotectonics parameters. Tectonophysics, 418, 205–218.

    Article  Google Scholar 

  • Peng, C. K., Havelin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary time series. Chaos, 5, 82–89. https://doi.org/10.1063/1.166141.

    Article  Google Scholar 

  • Peng, C. K., Mietus, J., Hausdorff, J. M., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1993). Long range anti-correlations and non-Gaussian behavior of the heartbeat. Physical Review Letters, 70, 1343–1346. https://doi.org/10.1103/PhysRevLett.70.1343.

    Article  Google Scholar 

  • Petrosian, A. (1995). Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In Computer-Based Medical Systems, 1995., Proceedings of the Eighth IEEE Symposium on (pp. 212–217). IEEE.

  • Raghavendra, B. S., & Dutt, D. N. (2010). Computing fractal dimension of signals using multiresolution Box-counting method. International Journal of Information and Mathematical Sciences, 6(1), 50–65.

    Google Scholar 

  • Roy, P. N. S., & Mondal, S. K. (2009). Fractal nature of earthquake occurrence in Northwest Himalayan region. The Journal of Indian Geophysical Union, 13(2), 63–68.

    Google Scholar 

  • Roy, P. N. S., & Mondal, S. K. (2012). Fractal and multifractal study of earthquakes for analysis of stress pattern in Kumaun Himalaya and its surrounding region. Journal of Earth System Science, 121(4), 1033–1047.

    Article  Google Scholar 

  • Roy, P. N. S., Mondal, S. K., & Joshi, M. (2012). Seismic Hazards Assessment of Kumaun Himalaya and adjacent region. Natural Hazards. https://doi.org/10.1007/s11069-012-0235-0.

    Google Scholar 

  • Roy, P. N. S., & Nath, S. K. (2007). Precursory correlation dimensions for three great earthquakes. Current Science, 93(11), 1522–1529.

    Google Scholar 

  • Rundle, J. B. (1989). Derivation of the complete Gutenberg-Richter magnitude–frequency relation using the principle of scale invariance. Journal of Geophysical Research, 94(B9), 12337–12342. (September).

    Article  Google Scholar 

  • Saar, M. O., & Manga, M. (2003). Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth and Planetary Science Letters, 214, 605–618.

    Article  Google Scholar 

  • Sri Lakshmi, S., & Tiwari, R. K. (2007). Are northeast and western Himalayas earthquake dynamics better “organized” than Central Himalayas: An artificial neural network approach. Geofísica Internacional, 46(1), 63–73.

    Google Scholar 

  • Sri Lakshmi, S., & Tiwari, R. K. (2009). Model dissection from earthquake time series: A comparative analysis using modern non-linear forecasting and artificial neural network approaches. Computers & Geosciences, 35(2), 191–204.

    Article  Google Scholar 

  • Srivastava, H. N., Bhattacharya, S. N., & Sinha Ray, K. C. (1996). Strange attractor characteristics of earthquakes in Shillong plateau and adjoining regions. Geophysical Research Letters, 23(24), 3519–3522.

    Article  Google Scholar 

  • Telesca, L., Lapenna, V., & Vallianatos, F. (2002). Monofractal and multifractal approaches in investigating scaling properties in temporal patterns of the 1983-2000 seismicity in the western Corinth graben, Greece. Physics of the Earth and Planetary Interiors, 131, 63–79.

    Article  Google Scholar 

  • Tiwari, R. K., Srilakshmi, S., & Rao, K. N. N. (2003). Nature of earthquake dynamics in the central Himalayan region: a nonlinear forecasting analysis. Journal of Geodynamics, 35(3), 273–287.

    Article  Google Scholar 

  • Tiwari, R. K., Srilakshmi, S., & Rao, K. N. N. (2004). Characterization of earthquake dynamics in the Northeastern India regions: a modern nonlinear forecasting analysis. Pure and Applied Geophysics, 161, 865–880.

    Article  Google Scholar 

  • Tosi, P. (1998). Seismogenic structure behaviour revealed by spatial clustering of seismicity in the Umbria-Marche Region (Central Italy). Annali di Geofisica, 41(2), 215–224.

    Google Scholar 

  • van Stiphout, T., Zhuang, J., & Marsan, D. (2012). Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-52382934.

    Google Scholar 

  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.

    Article  Google Scholar 

  • Yoder, M., Holliday, J. R., Turcotte, D. L., & Rundle, J. (2012). A geometric frequency–magnitude scaling transition: Measuring b= 1.5 for large earthquakes. Tectonophysics, 532–535, 162–174.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Head of the Centre for Earth, Ocean and Atmospheric Sciences, University of Hyderabad for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sri Lakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sri Lakshmi, S., Banerjee, P. Dynamic Multifractality of Seismic Activity in Northeast India. Pure Appl. Geophys. 176, 1561–1577 (2019). https://doi.org/10.1007/s00024-018-02087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-02087-y

Keywords

Navigation