Skip to main content
Log in

Temporal Variations of Seismic Parameters in Tehran Region

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The study of earthquake precursors can lead to deliver an entirely measurable, time varying estimation of the coming events which is strongly based on physical and geological principals and fully responsive to any future examination. The temporal variation of the seismic parameters such as “b” values, in the Gutenberg–Richter formula logN = a − bM, some details of the pre-shock accelerating moment release (AMR) and the variation of the Thirumalai and Mountain (TM) metric before the past big event is investigated in the vicinity of the Tehran city. The temporal variation of the b-value in some cases strongly supports the assumption that it has potential to be used as a precursory signal. In addition, analysis of the pre-shock AMR along with the inverse TM metric signal in the region shows deviations from the background long-term behavior prior to some of the bigger events in the studied area. The aggregation of these signs suggests that a combination of studied physical precursors has a potential which could be employed in a medium term earthquake warnings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified from Sharland et al. 2001)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aki, K. (1965). Maximum likelihood estimate of b in the formula logN = a−bM and its confidence limits. Bulletin of the Earthquake Research Institute, 43, 237–239.

    Google Scholar 

  • Allen, C., Amand, P., Richter, C., & Nordquist, J. (1965). Relation between seismicity and geological structure in the southern California region. Bulletin of the Seismological Society of America, 55, 752–797.

    Google Scholar 

  • Allen, M. B., Ghassemi, M. R., Shahrabi, M., & Qorashi, M. (2003). Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 25, 659–672.

  • Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes (p. 219). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ashtari, M., Hatzfeld, D., & Kamalian, N. (2005). Microseismicity in the region of Tehran. Tectonophysics, 395, 193–208.

    Article  Google Scholar 

  • Bakun, W. H., King, G. C. P., & Cockerham, R. S. (1986). Seismic slip, aseismic slip, and the mechanics of repeating earthquakes on the Calaveras fault, California. In S. Das, J. Boatwright, & C. H. Schlotz (Eds.), Earthquake source mechanics (Vol. 37, pp. 195–208). Geophys. Monogr. Ser. Washington, DC: AGU.

  • Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data. Bulletin Seismology Society American, 73(3), 831–851.

    Google Scholar 

  • Ben-Zion, Y., & Lyakhovsky, V. (2002). Accelerated seismic release and related aspects of seismicity patterns on earthquake faults. Pure and Applied Geophysics, 159, 2385–2412.

    Article  Google Scholar 

  • Berberian, M. (1983). The southern Caspian: A compressional depression floored by trapped, modified oceanic crust. Canadian Journal of Earth Sciences, 20, 163–183. doi:10.1139/e83-015.

    Article  Google Scholar 

  • Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265. doi:10.1139/e81-019.

    Article  Google Scholar 

  • Berberian, M., & Yeats, R. S. (1999). Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological Society of America, 89(1), 120–139.

    Google Scholar 

  • Berberian, M., & Yeats, R. S. (2001). Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. Paul Hancock Memorial Issue. Journal of Structural Geology, 23, 536–584.

    Article  Google Scholar 

  • Bowman, D. D., & King, G. C. P. (2001). Accelerating seismicity and stress accumulation before large earthquakes. Geophysical Research Letters, 28, 4039–4042.

    Article  Google Scholar 

  • Bowman, D. D., Ouillon, G., Sammis, C. G., Sornette, A., & Sornette, D. (1998). An observational test of the critical earthquake concept. Journal of Geophysical Research, 103, 24359–24372.

    Article  Google Scholar 

  • Brehm, D. J., & Braile, L. W. (1998). Intermediate-term earthquake prediction using precursory events in the New Madrid Seismic Zone. Bulletin of the Seismological Society of America, 88, 564–580.

    Google Scholar 

  • Bufe, C. G. (1970). Frequency–magnitude variations during the 1970 Danville earthquake swarm. Earthquake Notes, 41(3), 3–6.

    Google Scholar 

  • Bufe, C. G., Nishenko, S. P., & Varnes, D. J. (1994). Seismicity trends and potential for large earthquakes in the Alaska–Aleutian region. Pure and Applied Geophysics, 142, 83–99.

    Article  Google Scholar 

  • Bufe, C. G., & Varnes, D. J. (1993). Predictive modeling of the seismic cycle of the greater San Francisco Bay region. Journal of Geophysical Research, 98, 9871–9883.

    Article  Google Scholar 

  • Dasgupta, S., Mukhopadhyay, B., & Bhattacharya, A. (2007). Seismicity pattern in north Sumatra–Great Nicobar region: In search of precursor for the 26 December 2004 earthquake. Journal of Earth System Science, 116, 215–223.

    Article  Google Scholar 

  • Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. Journal of Geophysical Research, 101, 22371–22392.

    Article  Google Scholar 

  • Ellsworth, W. I., & Cole, A. T. (1997). A test of the characteristic earthquake hypothesis for the San Andreas Fault in central California. Seismological Research Letters, 68, 298.

    Google Scholar 

  • Ellsworth, W. L., Lindh, A. G., Prescott, W. H., & Herd, D. J. (1981). The 1906 San Francisco Earthquake and the seismic cycle. In D. W. Simpson & P. G. Richards (Eds.), Earthquake prediction: An international review (Vol. 44). Maurice Ewing Ser. Washington, DC: AGU.

  • Eneva, M., & Ben-Zion, Y. (1997). Techniques and parameters to analyze seismicity patterns associated with large earthquakes. Journal of Geophysical Research, 102, 17785–17795.

    Article  Google Scholar 

  • Ferguson, C. D., Klein, W., & Rundle, J. B. (1999). Spinodals, scaling, and ergodicity in a threshold model with long-range stress transfer. Physical Review E, 60, 1359–1373.

  • Field, E. H. (2007). Overview of the working group for the development of regional earthquake likelihood models (RELM). Seismological Research Letters, 78, 7–16.

    Article  Google Scholar 

  • Gerstenberger, M. C., & Rhoades, D. A. (2010). New Zealand earthquake forecast testing centre. Pure and Applied Geophysics, 167, 877–892.

    Article  Google Scholar 

  • Gibowicz, S.J. (1973). Variation of the frequency-magnitude relation during earthquake sequences in New Zealand. Bulletin of the Seismological Society of America, 63, 517–528.

    Google Scholar 

  • Gross, S., & Rundle, J. B. (1998). A systematic test of time-to-failure analysis. Geophysical Journal International, 133, 57–64.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

    Google Scholar 

  • Haberman, R. E. (1981). Precursory seismicity patterns: Stalking the mature seismic gap. In D. W. Simpson & P. G. Richards (Eds.), Earthquake prediction: An international review (Vol. 4, pp. 29–42). Maurice Ewing Ser. Washington, DC: AGU.

  • Hardebeck, J. L., Felzer, K. R., & Michael, A. J. (2008). Improved tests reveal that the accelerating moment release hypothesis is statistically insignificant. Journal of Geophysical Research, 113, B08310. doi:10.1029/2007JB005410.

    Article  Google Scholar 

  • Herz, A. V. M., & Hopfield, J. J. (1995). Earthquake cycles and neural reverberations, collective oscillations in systems with pulse-coupled threshold elements. Physical Review Letters, 75, 1222–1225.

    Article  Google Scholar 

  • Hessami, K., Nilforoushan, F., & Talbot, C. J. (2006). Active deformation within the Zagros Mountains deduced from GPS measurements. Journal of the Geological Society, London, 163, 143–148.

    Article  Google Scholar 

  • Jackson, J., Priestley, K., Allen M., & Berberian, M. (2002). Active tectonics of the south Caspian basin. Geophysical Journal International, 148(2), 214–245, 426.

  • Jaumé, S. C. (2000). Changes in earthquake size-frequency distributions underlying accelerating seismic moment/energy release. In J. B. Rundle, D. L. Turcotte, & W. Klein (Eds.), Geocomplexity and the physics of earthquakes (Vol. 120, pp. 199–210). Geophys. Monogr. Ser. Washington, DC: AGU.

  • Jaumé, S., & Bebbington, M. (2004). Accelerating seismic release from a self-correcting stochastic model. Journal of Geophysical Research, 109, B12301. doi:10.1029/2003JB002867.

    Article  Google Scholar 

  • Jaumé, S. C., & Sykes, L. R. (1999). Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes. Pure and Applied Geophysics, 155, 279–306.

    Article  Google Scholar 

  • Jiang, C., & Wu, Z. (2006). Benioff strain release before earthquakes in China: Accelerating or not? Pure and Applied Geophysics, 163, 1965–1976.

    Article  Google Scholar 

  • Jiang, C., & Wu, Z. (2010). Seismic moment release before the May 12, 2008, Wenchuan earthquake in Sichuan of southwest China. Concurrency and Computation, 22, 1784–1795.

    Article  Google Scholar 

  • Jones, L. M., & Hauksson, E. (1997). The seismic cycle in southern California: Precursor or response? Geophysical Research Letters, 24, 469–472.

    Article  Google Scholar 

  • Kanamori, H. (1981). The nature of seismicity patterns before large earthquakes. In D. W. Simpson and P. G. Richards (Eds.), Earthquake prediction. Washington, DC: American Geophysical Union. doi:10.1029/ME004p0001

  • Kazemian, J., Tiampo, K. F., Klein, W., & Dominguez, R. (2015). Foreshock and aftershocks in simple earthquake models. Physical Review Letters. doi:10.1103/PhyRevLett.114.088501.

    Google Scholar 

  • King, G. C. P., & Bowman, D. D. (2003). The evolution of regional seismicity between large earthquakes. Journal of Geophysical Research. doi:10.1029/2001JB000783.

    Google Scholar 

  • Main, I. (1996). Statistical physics, seismogenesis, and seismic hazard. Reviews of Geophysics, 34, 433–462.

    Article  Google Scholar 

  • Main, I. (1999). Applicability of the time-to-failure analysis to accelerated strain before earthquakes and volcanic eruptions. Geophysical Journal International, 139, F1–F6.

    Article  Google Scholar 

  • Mignan, A., King, G. C. P., Bowman, D. D., Lacassin, R., & Dmowska, R. (2006). Seismic activity in the Sumatra–Java region prior to the December 26, 2004 (Mw = 9.0–9.3) and March 28, 2005 (Mw = 8.7) earthquakes. Earth and Planetary Science Letters, 244, 639–654.

    Article  Google Scholar 

  • Mogi, K. (1962). Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquakes phenomena. Bulletin Earthquake Research Institute, University of Tokyo, 40(1), 125–173.

    Google Scholar 

  • Mogi, K. (1967). Regional variations in magnitude–frequency relation of earthquakes. Bulletin of the Earthquake Research Institute, Tokyo University, 5, 67–86.

    Google Scholar 

  • Mogi, K. (1981). Seismicity in western Japan and long term earthquake forecasting. In D. W. Simpson & P. G. Richards (Eds.), Earthquake prediction: An international review (Vol. 4, pp. 43–51). Maurice Ewing Ser. Washington, DC: AGU.

  • Molchan, G., & Dimitrieva, M. (1990). Dynamics of the magnitude–frequency relation for foreshocks. Physics of the Earth and Planetary Interiors, 6(1), 99–112.

    Article  Google Scholar 

  • Monterroso, D. (2003). Statistical seismology studies in Central America: b-value, seismic hazard and seismic quiescence. Compr. Summaries Uppsala Diss. Fac. Sci. Technol. 897. Acta Univ. Upsaliensis, Uppsala, Sweden.

  • Nuannin, P., Kulhánek, O., & Persson, L. (2005). Spatial and temporal b-value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophysical Research Letters, 32, L11307. doi:10.1029/2005GL022679.

    Article  Google Scholar 

  • Nuannin, P., Kulhánek, O., & Persson, L. (2012). Variations of b-values preceding large earthquakes in the Andaman–Sumatra subduction zone. Journal of Asian Earth Sciences, 61, 237–242.

    Article  Google Scholar 

  • Nuannin, P., Kulhánek, O., Persson, L., & Tillman, K. (2002). Forecasting of increased induced seismicity in the Zinkgruvan mine, Sweden, by using temporal variations of b-values. Acta Montana, Ser. A, 21(125), 13–25.

    Google Scholar 

  • Papazachos, B. C., Karakaisis, G. F., Papazachos, C. B., & Scordilis, E. M. (2007). Evaluation of the results for an intermediate-term prediction of the 8 January 2006 Mw = 6.9 Cythera earthquake in the Southwestern Aegean. Bulletin of the Seismological Society of America. doi:10.1785/0120060075.

    Google Scholar 

  • Papazachos, B. C., & Papazachos, C. B. (2001). Precursory accelerated Benioff strain in the Aegean area. Annali di Geofisica, 44, 461–474.

    Google Scholar 

  • Papazachos, B. C., Savvaidis, A. S., Karakaisis, G. F., & Papazachos, C. B. (2002). Precursory accelerating seismic crustal deformation in the northwestern Anatolia fault zone. Tectonophysics, 347, 217–230.

    Article  Google Scholar 

  • Press, F., & Allen, C. (1995). Patterns of seismic release in the southern California region. Journal of Geophysical Research, 100, 6421–6430.

    Article  Google Scholar 

  • Radjaee, A. H., Rham, D., Mokhtari, M., Tatar, M., Priestley, K., & Hatzfeld, D. (2010). Variation of Moho depth in the central part of the Alborz Mountains, northern Iran. Geophysical Journal International, 181(1), 173–184. doi:10.1111/j.1365-246X.2010.04518.x.

    Article  Google Scholar 

  • Robinson, R. (2000). A test of the precursory accelerating moment release model on some recent New Zealand earthquakes. Geophysical Journal International, 140, 568–576.

    Article  Google Scholar 

  • Rundle, J. B., Klein, W., & Gross, S. (1999). Physical basis for statistical patterns in complex earthquake populations: Models, predictions, and tests. PAGEOPH, 155, 575–607.

    Article  Google Scholar 

  • Rundle, J. B., Klein, W., Tiampo, K., & Gross, S. (2000). Linear pattern dynamics in nonlinear threshold systems. Physical Review E, 61(3), 2418–2431.

    Article  Google Scholar 

  • Rundle, J. B., Turcotte, D. L., Shcherbakov, R., Klein, W., & Sammis, C. (2003). Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Review of Geophysics, 41, 1019.

    Article  Google Scholar 

  • Saleur, H., Sammis, C. G., & Sornette, D. (1996). Discrete scale invariance, complex fractal dimensions, and long-periodic fluctuations in seismicity. Journal of Geophysical Research, 101, 17661–17677.

    Article  Google Scholar 

  • Sammis, C. G., & Smith, S. W. (1999). Seismic cycles and the evolution of stress correlation in cellular automaton models of finite fault networks. Pure and Applied Geophysics, 155, 307–334.

    Article  Google Scholar 

  • Scholz, C. H. (1968). The frequency–magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58, 399–415.

    Google Scholar 

  • Scholz, C.H. (2002). The mechanics of earthquakes and faulting, 2nd Edition. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Schorlemmer, D., & Gerstenberger, M. C. (2007). RELM testing center. Seismological Research Letters, 78(1), 30–36.

    Article  Google Scholar 

  • Schorlemmer, D., Gerstenberger, M. C., Wiemer, S., Jackson, D. D., & Rhoades, D. A. (2007). Earthquake likelihood model testing. Seismological Research Letters, 78, 17–29.

    Article  Google Scholar 

  • Sharland, P. R., Archer, R., Casey, D.M., Davies, R. B., Hall, S. H., Heward, A. P., Horbury, A. D., & Simmons, M.D. (2001). Arabian Plate Sequence Stratigraphy. Bahrain: GeoArabia Special Publication 2, Gulf Petrolink.

  • Smith, W. D. (1981). The b-value as an earthquake precursor. Nature, 289(5794), 36–139.

    Google Scholar 

  • Sobiesiak, M., Meyer, U., Schmidt, S., Goetze, J. H., & Krawczyk, C. (2007). Asperity generating upper crustal sources revealed by b-value and isostatic residual anomaly grids in the area of Antofagasta. Journal of Geophysical Research, 112, B12308.

    Article  Google Scholar 

  • Sodoudi, F., Yuan, X., Kind, R., Heit, B., & Sadidkhouy, A. (2009). Evidence for a missing crustal root and a thin lithosphere beneath the Central Alborz by receiver function studies. Geophysical Journal International, 177(2), 733–742. doi:10.1111/j.1365-246X.2009.04115.x.

    Article  Google Scholar 

  • Swan, F. H., Schwartz, D. P., & Cluff, L. S. (1980). Recurrence of moderate to large magnitude earthquakes produced by surface faulting on the Wasatch fault zone, Utah. Bulletin of the Seismological Society of America, 70, 1431–1462.

    Google Scholar 

  • Thirumalai, D., Mountain, R. D., & Kirkpatrick, T. R. (1989). Ergodic behavior in supercooled liquids and in glasses. Physical Review A, 39, 3563–3574.

    Article  Google Scholar 

  • Tiampo, K. F., Klein, W., Li, H.-C., Mignan, A., Toya, Y., Rundle, J. B., et al. (2010). Ergodicity and earthquake catalogs: Forecast testing and resulting implications. Pure and Applied Geophysics. doi:10.1007/s00024-010-0076-2.

    Google Scholar 

  • Tiampo, K. F., Rundle J. B., Klein, W., Sá Martins, J.S., & Ferguson C. D. (2003). Ergodic dynamics in a natural threshold system. Physical Review Letters, 91, 238501.

  • Tiampo, K. F., Rundle, J. B., & Klein, W. (2006a). Premonitory seismicity changes prior to the Parkfield and Coalinga earthquakes in southern California. Tectonophysics, 413, 77–86.

    Article  Google Scholar 

  • Tiampo, K. F., Rundle, J.B. & Klein, W. (2006b). Stress shadows determined from a phase dynamical measure of historic seismicity. Pure and Applied Geophysics. doi:10.1007/200024-006-0134-y.

    Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Klein, W., Holliday, J., Martins, J. S., & Ferguson, C. D. (2007). Ergodicity in natural earthquake fault networks. Physical Review E, 75, 066107.

    Article  Google Scholar 

  • Tsapanos, T. (1990). b-value of two tectonic parts in the circum-Pacific belt. PAGEOPH, 143, 229–242.

    Article  Google Scholar 

  • Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Turcotte, D. L., Newman, W. I., & Shcherbakov, R. (2003). Micro and macroscopic models of rock fracture. Geophysical Journal International, 152, 718–728.

    Article  Google Scholar 

  • Utsu, T., Ogata, Y., & Matsu’ura, R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43, 1–33.

    Article  Google Scholar 

  • Varnes, D. J. (1989). Predicting earthquakes by analyzing accelerating precursory seismic activity. Pure and Applied Geophysics, 130, 661–686.

    Article  Google Scholar 

  • Vere-Jones, D. (1995). Forecasting earthquakes and earthquake risk. International Journal of Forecasting, 11, 503–538.

    Article  Google Scholar 

  • Vere-Jones, D. (2006). The development of statistical seismology, A personal experience. Tectonophysics, 413, 5–12.

    Article  Google Scholar 

  • Vere-Jones, D., Robinson, R., & Yang, W. (2001). Remarks on the accelerated moment release model: Problems of model formulation, simulation and estimation. Geophysical Journal International, 144, 517–531.

    Article  Google Scholar 

  • Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., et al. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1), 381–398. doi:10.1111/j.1365-246X.2004.02222.x.

    Article  Google Scholar 

  • Wiemer, S., McNutt, S. R., & Wyss, M. (1998). Temporal and three-dimensional spatial analysis of the frequency–magnitude distribution. Geophysical Journal International, 134, 409–421.

    Article  Google Scholar 

  • Wiemer, S., & Wyss, M. (1997). Mapping the frequency–magnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research, 102, 15115–15128.

    Article  Google Scholar 

  • Wiemer, S., & Wyss, M. (2002). Mapping spatial variability of the frequency–magnitude distribution of earthquakes. Advances in Geophysics, 45, 259–302.

    Article  Google Scholar 

  • Wyss, M. (1973). Towards a physical understanding of earthquake frequency distribution. Geophysical Journal of the Royal Astronomical Society, 31, 341–359.

    Article  Google Scholar 

  • Yang, W., Vere-Jones, D., & Li, M. (2001). A proposed method for locating the critical point of a future earthquake using the critical earthquake concept. Journal of Geophysical Research, 106, 4121–4128.

    Article  Google Scholar 

  • Zechar, J. D. & Jordan, T. H. (2010). Simple smoothed seismicity earthquake forecasts for Italy. Annals of Geophysics, 53(3), 99–105. doi:10.4401/ag-4845.

  • Zoller, G., & Hainzl, S. (2002). A systematic spatiotemporal test of the critical point hypothesis for large earthquakes. Geophysical Research Letters, 29(11), 1558. doi:10.1029/2002GL014856.

    Article  Google Scholar 

  • Zoller, G., Hainzl, S., Ben-Zion, Y., & Holschneider, M. (2006). Earthquake activity related to seismic cycles in a model for a heterogeneous strike-slip fault. Tectonophysics, 423, 137–145.

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Department of physics of the Earth, Institute of Geophysics, University of Tehran. We would like to thank head of the Institute of Geophysics, Dr. Nabi Bidhendi, for his kind support during the performance of this project, and we would also like to extend our sincere thanks to the Armed Forces of the Islamic Republic of Iran’s elite Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Kazemian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemian, J., Hatami, M.R. Temporal Variations of Seismic Parameters in Tehran Region. Pure Appl. Geophys. 174, 3841–3852 (2017). https://doi.org/10.1007/s00024-017-1549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1549-3

Keywords

Navigation