Skip to main content
Log in

Lowermost Mantle Velocity Estimations Beneath the Central North Atlantic Area from Pdif Observed at Balkan, East Mediterranean, and American Stations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Lowermost mantle velocity in the area 15°S–70°N latitude/60°W–5° W longitude is estimated using two groups of observations, complementary to each other. There are 894 Pdif observations at stations in the Balkan and Eastern Mediterranean areas from 15 major earthquakes in Central and South America. Another 218 Pdif observations are associated with four earthquakes in Greece/Turkey and one event in Africa, recorded by American stations. A Pdif slowness tomographic approach of the structures immediately above the core-to-mantle boundary (CMB) is used, incorporating corrections for ellipticity, station elevation and velocity perturbations along the ray path. A low-velocity zone above CMB with a large geographical extent, approximately in the area (35–65°N) × (40–20°W), appears to have the velocity perturbations exceeding the value actually assumed by some global models. Most likely, it is extended beneath western Africa. A high-velocity area is observed west of the low-velocity zone. The results suggest that both Cape Verde and Azorean islands are located near transition areas from low-to-high velocity values in the lowermost mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander S.S. & Phinney R.A., 1966. A study of the core-mantle boundary using P waves diffracted by the earth’s core, J. Geophys. Res., 71, 5943–5958.

  • Brown, R.J., 1984. On the determination of source-receiver distances using a new equidistant latitude, Geophys. J. R. astr. Soc., 76, 445–459.

  • Garnero, E.J., Revenaugh, J.S., Williams, Q., Lay, T. & Kellogg, L.H., 1998. Ultralow velocity zone at the core-mantle boundary. In: The Core-Mantle Boundary, pp. 319–334, eds Gurnis, M., Wysession, M.E., Knittle, E. and Buffet, B.A., American Geophysical Union.

  • Gilbert, F. & Backus, G.E., 1966. Propagator matrices in elastic and vibration problems, Geophys., 31, 326–332.

  • Karason, H. & van der Hilst, R.D., 2001. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff), J. Geophys. Res., 106, 6569–6587.

  • Kennett, B.L.N. & Engdahl, E.R., 1991. Travel times for global earthquake location and Phase identification, Geophys. J. Int., 106, 429–465.

  • Kennett, B. L. N., Engdahl, E. R. & Buland, R., 1995. Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108-124.

  • Knopoff L. & Gilbert F., 1961. Diffraction of elastic waves by the core of the earth, Bull. Seis. Soc Am., 51, 35-49.

  • Li, C., van der Hilst, R.D., Engdahl, E.R. & Burdick, S., 2008. A new global model for P wave speed variations in Earth’s mantle, Geochem. Geophys. Geosyst., 9, Q05018, doi:10.1029/2007GC001806.

  • Loper, D.E. & Lay, T., 1995. The core-mantle boundary region, J. Geophys. Res., 100, 6397–6420.

  • Masters, G., Laske, G., Bolton, H. & Dziewonski, A., 2000. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure in: Earth’s Deep Interior Mineral Physics and Tomography From the Atomic to the Global Scale,Vol. 117: Geophysical Monograph Series, pp. 63–87, eds Karato, S., Forte, A., Liebermann, R., Masters, G. & Stixrude, L., American Geophysical Union.

  • McNamara, A. K., Garnero, E.J. & Rost, S., 2010. Tracking deep mantle reservoirs with ultra-low velocity zones, Earth Planet. Sci. Lett., 299, 1–9, doi:10.1016/j.epsl.2010.07.042.

  • Montagner, J.-P. & Kennett, B. L. N., 1996. How to reconcile body-wave and normal-mode reference Earth models? Geophys. J. Int., 125, 229–248.

  • Montelli, R., Nolet, G., Dahlen, F.A. & G. Masters, G., 2006. A catalogue of deep mantle plumes: New results from finite frequency tomography, Geochem. Geophys. Geosyst., 7, Q11007, doi:10.1029/2006GC001248.

  • Mooney, W., Laske, G. & Master, G., 1998. CRUST 5.1: a global crustal model at 5° x 5°, J. Geophys. Res. 103, 727–747.

  • Mula A.H. & Muller G., 1980. Ray parameters of diffracted long period P and S waves and the velocities at the base of the mantle, Pageoph, 118, 1272–1292.

  • Ni, S. & Helmberger, D.V., 2001. Horizontal transition from fast to slow structures at the core-mantle boundary; South Atlantic, Earth Planet. Sci. Lett., 187, 301–310.

  • Pearce, J. & Mittleman, D., 2002. Defining the Fresnel zone for broadband radiation, Phys. Rev., E 66, 1–4.

  • Ritsema, J., Ni, S., Helmberger, D.V. & Crotwell, H.P., 1998. Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa, Geophys. Res. Lett., 25, 4245–4248.

  • Rost, S. & Garnero, E.J., 2006. Detection of an ultralow velocity zone at the core-mantle boundary using diffracted PKKPab waves, J. Geophys. Res., 111, B07309, doi:10.1029/2005JB003850.

  • Sacks, I.S., 1967. Diffracted P-wave studies of the earth’s core, 2. Lower mantle velocity, core size, lower mantle structure, J. Geophys. Res., 72, 2589–2594.

  • Sidorin, I., Gurnis, M. & Helmberger, D.V, 1999. Dynamics of a phase change at the base of the mantle consistent with seismological observations, J. Geophys. Res., 104, 15005–15023.

  • Souriau, A. & Poupinet G. (1994). Lateral variations in P velocity and attenuation in the D” layer from diffracted P waves, Phys. Earth. Planet. Int., 84, 227–234.

  • Sylvander, M., Ponce, B. & Souriau, A., 1997. Seismiv velocities at the core-mantle boundary inferred from P waves diffracted around the core, Phys. Earth Planet. Inter., 101, 189-202.

  • Takeuchi, H. & Saito, M., 1972. Seismic surface waves. In: Bolt, B.A. (Ed.) Seismology: Surface Waves and Earth Oscillations, Methods in Computational Physics, v.11, 217-295. New York, Academic Press.

  • Taylor, J.R., 1982. An Introduction Error Analysis, University Science Books.

  • Tkalčić, H., Romanowicz, B. & Houy, N., 2002. Constraints on D″ structure using PKP(AB-DF), PKP(BC-DF) and PcP-P travel time data from broadband records, Geophys. J. Int., 149, 599–616.

  • Thorne, M.S. & Garnero, E.J., 2004. Inferences on ultralowvelocity zone structure from a global analysis of SPdKS waves, J. Geophys. Res., 109, B08301, doi:10.1029/2004JB003010.

  • Valenzuela, R.W. & Wysession, M.E., 1998. Illuminating the base of the mantle with diffracted waves, in The Core-Mantle Boundary Region, Geodyn Ser, Vol. 28, edited by M. Gurnis, M.E. Wysession, E. Knittle, & B.A. Buffett, pp. 273–297, AGU, Washington, D.C.

  • Wessel, P. & Smith, W.H.F., 1996. A global, self-consistent, hierarchical, high-resolution shoreline database, J.Geophys.Res., 104, 4795–4809.

  • Wang, R., 1999. A simple orthonormalization method for the stable and efficient computation of Green’s functions, Bull. Seismol. Soc. Amer., 89, 733–741.

  • Williams, Q., Revenaugh, J. & Garnero, E., 1998. A correlation between ultra-low basal velocities in the mantle and hot spots, Science, 281, 546–549.

  • Wysession, M.E. & Okal, E.A., 1988. Evidence for lateral heterogeneity at the core-mantle boundary from the slowness of diffracted S profiles, in Structure and Dynamics of Earth’s Deep Interior, Geophys Monogr Ser, Vol. 46, edited by D.E. Smylie & R. Hide, pp. 55–63, AGU, Washington, D.C.

  • Wysession, M.E. & Okal, E.A., 1989. Regional analysis of D” velocities from the ray parameters of diffracted P profiles, Geophys. Res. Lett., 16, 1417–1420.

  • Wysession, M.E., Okal, E.A. & Bina C.R., 1992. The structure of the core-mantle boundary from diffracted waves, J Geophys Res, 97, 8749–8764.

  • Xu, Y. & Koper, K.D., 2009. Detection of a ULVZ at the base of the mantle beneath the northwest Pacific, Geophys. Res. Lett., 36(L17301), doi:10.1029/2009GL039387.

  • Zhao, D., 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics, Phys. Earth Planet. Inter., 146, 3–34.

Download references

Acknowledgments

The authors express their deep gratitude to people from IRIS, GEOFON, and ORFEUS DMC for their support in acquiring the input data for this study. GMT software (Wessel and Smith 1996) was used to draw figures. Professor Zhao kindly provided the 3-D global velocity model in a digital format. We thank Satoshi Kaneshima, Pawel Wiejacz, and two anonymous reviewer for valuable comments. Distances have been evaluated with the routine of Brown (1984) incorporated in Herrmann’s Computer Programs in Seismology. Ellipticity corrections have been evaluated with a routine available at RSES, ANU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Ivan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivan, M., Ghica, D.V., Gosar, A. et al. Lowermost Mantle Velocity Estimations Beneath the Central North Atlantic Area from Pdif Observed at Balkan, East Mediterranean, and American Stations. Pure Appl. Geophys. 172, 283–293 (2015). https://doi.org/10.1007/s00024-014-0859-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0859-y

Keywords

Navigation