Skip to main content
Log in

Long Time Dynamics of Forced Critical SQG

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of a compact global attractor for the dynamics of the forced critical surface quasi-geostrophic equation (SQG) and prove that it has finite fractal (box-counting) dimension. In order to do so we give a new proof of global regularity for critical SQG. The main ingredient is the nonlinear maximum principle in the form of a nonlinear lower bound on the fractional Laplacian, which is used to bootstrap the regularity directly from L to C α, without the use of De Giorgi techniques. We prove that for large time, the norm of the solution measured in a sufficiently strong topology becomes bounded with bounds that depend solely on norms of the force, which is assumed to belong merely to L H 1. Using the fact that the solution is bounded independently of the initial data after a transient time, in spaces conferring enough regularity, we prove the existence of a compact absorbing set for the dynamics in H 1, obtain the compactness of the linearization and the continuous differentiability of the solution map. We then prove exponential decay of high yet finite dimensional volume elements in H 1 along solution trajectories, and use this property to bound the dimension of the global attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S., Nirenberg L.: Lower bounds and uniqueness theorems for solutions of differential equations in a hilbert space. Comm. Pure Appl. Math. 20, 207–229 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berselli L.C.: Vanishing viscosity limit and long-time behavior for 2d quasi-geostrophic equations. Indiana Univ. Math. J. 51(4), 905–930 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babin, A.V., Vishik, M.I.: Attractors of evolution equations. Studies in Mathematics and its Applications, vol. 25. North-Holland Publishing Co., Amsterdam (1992)

  4. Córdoba A., Córdoba D.: A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249(3), 511–528 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Caffarelli L., Chan C.H., Vasseur A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50 (Special Issue):97–107, 2001. Dedicated to Professors Ciprian Foias and Roger Temam, Bloomington, IN (2000)

  7. Constantin P., Foias C.: Global lyapunov exponents, kaplan–yorke formulas and the dimension of the attractors for 2d navier–stokes equations. Comm. Pure Appl. Math. 38(1), 1–27 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Constantin, P., Foias, C.: Navier–Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988)

  9. Córdoba D., Fefferman C.: Behavior of several two-dimensional fluid equations in singular scenarios. Proc. Natl. Acad. Sci. USA 98(8), 4311–4312 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Córdoba D., Fefferman C.: Growth of solutions for qg and 2d euler equations. J. Am. Math. Soc. 15(3), 665–670 (2002)

    Article  MATH  Google Scholar 

  11. Córdoba D., Fontelos M.A., Mancho A.M., Rodrigo J.L.: Evidence of singularities for a family of contour dynamics equations. Proc. Natl. Acad. Sci. USA 102(17), 5949–5952 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Constantin P., Foias C., Manley O.P., Temam R.: Determining modes and fractal dimension of turbulent flows. J. Fluid Mech. 150, 427–440 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Constantin P., Foias C., Temam R.: Attractors representing turbulent flows. Mem. Am. Math. Soc. 53(314), vii–67 (1985)

    MathSciNet  Google Scholar 

  14. Constantin P., Foias C., Temam R.: On the dimension of the attractors in two-dimensional turbulence. Phys. D 30(3), 284–296 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Constantin P., Glatt-Holtz N., Vicol V.: Unique ergodicity for fractionally dissipated, stochastically forced 2d Euler equations. Comm. Math. Phys. 330(2), 819–857 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Chae, D.: The geometric approaches to the possible singularities in the inviscid fluid flows. J. Phys. A. 41(36):365501, 11 (2008)

  17. Cockburn B., Jones D.A., Titi E.S.: Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comp. 66(219), 1073–1087 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Chae D., Lee J.: Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Comm. Math. Phys. 233(2), 297–311 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Constantin, P., Lai, M.-C., Sharma, R., Tseng, Y.-H., Wu, J.: New numerical results for the surface quasi-geostrophic equation. J. Sci. Comput. 50(1), 1–28 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Constantin P., Majda A.J., Tabak E.: Formation of strong fronts in the 2-d quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Chen Q., Miao C., Zhang Z.: A new bernstein’s inequality and the 2d dissipative quasi-geostrophic equation. Comm. Math. Phys. 271(3), 821–838 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Constantin P., Nie Q., Schörghofer N.: Nonsingular surface quasi-geostrophic flow. Phys. Lett. A 241(3), 168–172 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Constantin P.: Collective L estimates for families of functions with orthonormal derivatives. Indiana Univ. Math. J. 36(3), 603–616 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Constantin P.: Energy spectrum of quasigeostrophic turbulence. Phys. Rev. Lett. 89(18), 184501 (2002)

    Article  ADS  Google Scholar 

  25. Constantin, P.: Euler equations, Navier–Stokes equations and turbulence. In: Mathematical foundation of turbulent viscous flows. Lecture Notes in Math, vol. 1871, pp. 1–43. Springer, Berlin (2006)

  26. Córdoba D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. Math. (2) 148(3), 1135–1152 (1998)

    Article  MATH  Google Scholar 

  27. Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Constantin P., Tarfulea A., Vicol V.: Absence of anomalous dissipation of energy in forced two dimensional fluid equations. Arch. Ration. Mech. Anal. 212(3), 875–903 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chepyzhov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics, vol. 49. American Mathematical Society Providence, RI (2002)

  30. Caffarelli L.A., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Caffarelli L.A., Vasseur A.F.: The de giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discret. Contin. Dyn. Syst. Ser. S 3(3), 409–427 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Constantin P., Vicol V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22(5), 1289–1321 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Constantin P., Wu J.: Behavior of solutions of 2d quasi-geostrophic equations. SIAM J. Math. Anal. 30(5), 937–948 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Constantin P., Wu J.: Regularity of hölder continuous solutions of the supercritical quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(6), 1103–1110 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Constantin P., W u. Hölder J.: continuity of solutions of supercritical dissipative hydrodynamic transport equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 159–180 (2009)

    Article  ADS  MATH  Google Scholar 

  36. Calderón A.P., Zygmund A.: Singular integrals and periodic functions. Studia Math. 14, 249–271 (1954)

    MathSciNet  Google Scholar 

  37. Dabkowski M.: Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation. Geom. Funct. Anal. 21(1), 1–13 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Dong H., Du D.: Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discret. Contin. Dyn. Syst. 21(4), 1095–1101 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Doering C.R., Gibbon J.D.: Note on the constantin–foias–temam attractor dimension estimate for two-dimensional turbulence. Phys. D 48(2–3), 471–480 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  40. Deng J., Hou T.Y., Li R., Yu X.: Level set dynamics and the non-blowup of the 2d quasi-geostrophic equation. Methods Appl. Anal. 13(2), 157–180 (2006)

    MATH  MathSciNet  Google Scholar 

  41. Dabkowski M., Kiselev A., Silvestre L., Vicol V.: Global well-posedness of slightly supercritical active scalar equations. Anal. PDE 7(1), 43–72 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Dabkowski M., Kiselev A., Vicol V.: Global well-posedness for a slightly supercritical surface quasi-geostrophic equation. Nonlinearity 25(5), 1525–1535 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Dong H., Li D.: Spatial analyticity of the solutions to the subcritical dissipative quasi-geostrophic equations. Arch. Ration. Mech. Anal. 189(1), 131–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Dong H.: Dissipative quasi-geostrophic equations in critical sobolev spaces: smoothing effect and global well-posedness. Discrete Contin. Dyn. Syst. 26(4), 1197–1211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Dong H., Pavlović N.: Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces. Comm. Math. Phys. 290(3), 801–812 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Dong H., Pavlović N.: A regularity criterion for the dissipative quasi-geostrophic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1607–1619 (2009)

    Article  ADS  MATH  Google Scholar 

  48. Foias C., Kukavica I.: Determining nodes for the kuramoto-sivashinsky equation. J. Dynam. Differ. Equ. 7(2), 365–373 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  49. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes equations and turbulence. Encyclopedia of Mathematics and its applications, vol. 83. Cambridge University Press, Cambridge (2001)

  50. Foias C., Manley O., Temam R.: Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO Modél. Math. Anal. Numér. 22(1), 93–118 (1988)

    MATH  MathSciNet  Google Scholar 

  51. Foias C., Manley O.P., Temam R., Trève Y.M.: Asymptotic analysis of the navier–stokes equations. Phys. D 9(1–2), 157–188 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  52. Foias C., Prodi G.: Sur le comportement global des solutions non-stationnaires des équations de navier–stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)

    MathSciNet  Google Scholar 

  53. Friedlander S., Pavlović N., Vicol V.: Nonlinear instability for the critically dissipative quasi-geostrophic equation. Comm. Math. Phys. 292(3), 797–810 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Fefferman C., Rodrigo J.L.: Analytic sharp fronts for the surface quasi-geostrophic equation. Comm. Math. Phys. 303(1), 261–288 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Foias C., Sell G.R., Temam R.: Variétés inertielles des équations différentielles dissipatives. C. R. Acad. Sci. Paris Sér. I Math. 301(5), 139–141 (1985)

    MATH  MathSciNet  Google Scholar 

  56. Foias C., Sell G.R., Temam R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73(2), 309–353 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Foias C., Temam R.: Determination of the solutions of the navier–stokes equations by a set of nodal values. Math. Comp. 43(167), 117–133 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Foias C., Titi E.S.: Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity 4(1), 135–153 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Gibbon J.D., Titi E.S.: Attractor dimension and small length scale estimates for the three-dimensional navier–stokes equations. Nonlinearity 10(1), 109–119 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Hale, J.K.: Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence, RI (1988)

  61. Hmidi T., Keraani S.: Global solutions of the super-critical 2d quasi-geostrophic equation in besov spaces. Adv. Math. 214(2), 618–638 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  62. Held I.M., Pierrehumbert R.T., Garner S.T., Swanson K.L.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Jones D.A., Titi E.S.: On the number of determining nodes for the 2d navier–stokes equations. J. Math. Anal. Appl. 168(1), 72–88 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  64. Jones D.A., Titi E.S.: Upper bounds on the number of determining modes, nodes, and volume elements for the navier–stokes equations. Indiana Univ. Math. J. 42(3), 875–887 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  65. Ju N.: Existence and uniqueness of the solution to the dissipative 2d quasi-geostrophic equations in the sobolev space. Comm. Math. Phys. 251(2), 365–376 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. Ju N.: The maximum principle and the global attractor for the dissipative 2d quasi-geostrophic equations. Comm. Math. Phys. 255(1), 161–181 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. Ju N.: Dissipative 2d quasi-geostrophic equation: local well-posedness, global regularity and similarity solutions. Indiana Univ. Math. J. 56(1), 187–206 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  68. Kiselev A.: Nonlocal maximum principles for active scalars. Adv. Math. 227(5), 1806–1826 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  69. Kiselev, A., Nazarov, F.: A variation on a theme of caffarelli and vasseur. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 40):58–72, 220 (2009)

  70. Kiselev A., Nazarov F.: Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation. Nonlinearity 23(3), 549–554 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  71. Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2d dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. Kato T., Ponce G.: Commutator estimates and the euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  73. Kenig C.E., Ponce G., Vega L.: Well-posedness of the initial value problem for the korteweg–de vries equation. J. Am. Math. Soc. 4(2), 323–347 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  74. Kukavica I.: On the number of determining nodes for the ginzburg-landau equation. Nonlinearity 5(5), 997–1006 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. Kukavica I.: Level sets of the vorticity and the stream function for the 2d periodic navier–stokes equations with potential forces. J. Differ. Equ. 126(2), 374–388 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Kukavica, I.: Log–log convexity and backward uniqueness. Proc. Am. Math. Soc, 135(8):2415–2421 (2007)

  77. Kukavica I., Vicol V.: On the analyticity and gevrey-class regularity up to the boundary for the euler equations. Nonlinearity 24(3), 765–796 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  78. Ladyzhenskaya, O.: Attractors for solution maps and evolution equations. Lezioni Lincee. [Lincei Lectures]. Cambridge University Press, Cambridge (1991)

  79. Marchand F.: Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces L p or \({\dot{h}^{-1/2}}\). Comm. Math. Phys. 277(1), 45–67 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  80. Miura H.: Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Comm. Math. Phys. 267(1), 141–157 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  81. Ohkitani K., Sakajo T.: Oscillatory damping in long-time evolution of the surface quasi-geostrophic equations with generalized viscosity: a numerical study. Nonlinearity 23(12), 3029–3051 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  82. Ohkitani K., Yamada M.: Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow. Phys. Fluids 9(4), 876–882 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  83. Pedlosky J.: Geophysical Fluid Dynamics. Springer, Berlin (1982)

    Book  Google Scholar 

  84. Resnick, S.G.: Dynamical problems in non-linear advective partial differential equations. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)—The University of Chicago (1995)

  85. Robinson, J.: Infinite-dimensional dynamical systems. Cambridge Texts in Applied Mathematics. An introduction to dissipative parabolic PDEs and the theory of global attractors. Cambridge University Press, Cambridge (2001)

  86. Roncal, L., Stinga, P.R.: Fractional laplacian on the torus. arXiv preprint arXiv:1209.6104 (2012)

  87. Shapiro V.L.: Fourier series in several variables. Bull. Am. Math. Soc. 70, 48–93 (1964)

    Article  MATH  Google Scholar 

  88. Silvestre L.: Eventual regularization for the slightly supercritical quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 693–704 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  89. Silvestre, L.: Holder estimates for advection fractional-diffusion equations. arXiv preprint arXiv:1009.5723 (2010)

  90. Schonbek M.E., Schonbek T.P.: Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35(2), 357–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  91. Silvestre L., Vicol V.: Hölder continuity for a drift-diffusion equation with pressure. Ann. l’Institut Henri Poincare (C) Non Linear Anal. 20(4), 637–652 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  92. Silvestre L., Vicol V., Zlatoš A.: On the loss of {ccaron;ontinuity for super-critical drift-diffusion equations. Arch. Ration. Mech. Anal. 207(3), 845–877 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  93. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, NJ (1971)

  94. Taylor, M.E.: Pseudodifferential operators and nonlinear PDE. Progress in Mathematics, vol. 100. Birkhäuser Boston Inc., Boston, MA (1991)

  95. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, volume 68 of Applied Mathematical Sciences, second edition. Springer, New York (1997)

  96. Toland J.F.: Stokes waves in hardy spaces and as distributions. J. Math. Pures Appl. 79(9), 901–917 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  97. Wang M., Tang Y.: On dimension of the global attractor for 2d quasi-geostrophic equations. Nonlinear Anal. Real World Appl. 14(4), 1887–1895 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  98. Wu, J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36(3):1014–1030 (2004/05)

  99. Wu, J.: Dissipative quasi-geostrophic equations with L p data. Electron. J. Differ. Equ, 56, 1–13 (2001)

  100. Xue L., Zheng X.: Note on the well-posedness of a slightly supercritical surface quasi-geostrophic equation. J. Differ. Equ. 253(2), 795–813 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  101. Yu X.: Remarks on the global regularity for the super-critical 2d dissipative quasi-geostrophic equation. J. Math. Anal. Appl. 339(1), 359–371 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  102. Ziane M.: Optimal bounds on the dimension of the attractor of the Navier–Stokes equations. Phys. D Nonlinear Phenom. 105(1), 1–19 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad Vicol.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantin, P., Tarfulea, A. & Vicol, V. Long Time Dynamics of Forced Critical SQG. Commun. Math. Phys. 335, 93–141 (2015). https://doi.org/10.1007/s00220-014-2129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2129-3

Keywords

Navigation