Skip to main content
Log in

Regularity of Non-Newtonian Fluids

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider a non-Newtonian fluids with shear dependent viscosity in a bounded domain \({\Omega \subset \mathbb{R}^n, n = 2, 3}\) . For the power-law model with the viscosity as in (1.4), we show the global in time existence of a weak solution for \({q \geq \frac{11}{5}}\) when n = 3 (see Theorem 1.1), and the local in time existence of a weak solution for \({2 > q > \frac{3n}{n+2}}\) , when n = 2,3 (see Theorem 1.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amman H.: Stability of the rest state of viscous incompressible fluid. Arch. Rat. Mech. Anal 126, 231–242 (1994)

    Article  Google Scholar 

  2. Beirãoda Veiga H.: On the regularity of flows with Ladyzhenskaya Shear-dependent viscosity and slip or nonslip boundary conditions. Comm. Pure Appl. Math 58(4), 552–577 (2005)

    Article  MathSciNet  Google Scholar 

  3. Beirãoda Veiga H., Kaplický P., Ružička M.: Boundary regularity of shear thickening flows. J. Math. Fluid Mech. 13(3), 387–404 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bellout H., Bloom F., Nečas J.: Young measure-valued solutions for non-newtonian incompressible fluids. Comm. PDE 19, 1763–1803 (1994)

    Article  MATH  Google Scholar 

  5. Berselli L.C., Diening L., Ružička M.: Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12(1), 101–132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bothe D., Prüss J.: L p-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39(2), 379–421 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buliček M., Frank F.E., Kaplický Pražák, D.: On uniqueness and time regularity of flows of power-law like non-Newtonian fluids. Math. Methods Appl. Sci. 33(16), 1995–2010 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Cioranescu, D.: Quelques exemples de fluides newtoniens generaliss, some examples of generalized Newtonian fluids. Mathematical Topics in Fluid Mechanics (Lisbon, 1991), pp. 1–31. Pitman Res. Notes Math. Ser., vol. 274, Longman Sci. Tech., Harlow (1992)

  9. Diening L., Ružička M.: Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech. 7(3), 413–450 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Diening, L., Ružička, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9(1), 1-46 (2010)

    Google Scholar 

  11. Galdi, G.P.:An introduction to the mathematical theory of the Navier–Stokes equations: steady-state problems, 2nd edn. Springer Monographs in Mathematics. Springer, New York (2011)

  12. Hardy G.H., Littlewood J.E., Polya G.: Inequalities. Cambridge University Press, London (1952)

    MATH  Google Scholar 

  13. Ladyženskaya O.A.: New equations for the description of the ivscous incompressible fluids and global solvability in the range of the boundary value problems to these equations. Trudy Mat. Inst. Steklov 102, 85–104 (1967)

    MathSciNet  Google Scholar 

  14. Ladyženskaya O.A.: On some modifications of the Navier–Stokes equations for large gradients of velocity. Zapiski Naukhnych Seminarov LOMI 7, 126–154 (1968)

    Google Scholar 

  15. Ladyženskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Beach, New York (1969)

    Google Scholar 

  16. Leray J.: Etudes de diverse equations integrales non lineaires et de quelques problemes que pose rhydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  Google Scholar 

  17. Lions, J.L.: Quelques Mthodes de Résolution de Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

  18. Málek, J., Nečas, J.,Novotný, A.: Measure-valued solutions and asymptotic behavior of a multipolar model of a boundary layer. Czechoslovak Math. J. (3) 42(117), 549–576 (1992)

  19. Málek, J., Nečas, J., Rokyta, M., Ružička, M.: Weak and measure-valued solutions to evolutionary partial differential equations. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996)

  20. Málek J., Nečas J., Ružička M.: On the non-Newtonian incompressible fluids. Math. Models Methods Appl. Sci. 3(1), 35–63 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Málek J., Nečas J., Ružička M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2. Adv. Differ. Equ. 6(3), 257–302 (2001)

    ADS  MATH  Google Scholar 

  22. Málek J., Rajagopal K.R., Ružička M.: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5(6), 789–812 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nečas, J.: Theory of multipolar viscous fluids. The Mathematics of Finite Elements and Applications, VII (Uxbridge, 1990), pp. 233–244. Academic Press, London (1991)

  24. Pares C.: Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43(3-4), 245–296 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Prohl A., Ružička M.: On fully implicit space-time discretization for motions of incompressible fluids with shear-dependent viscosities: the case p ≤ 2. SIAM J. Numer. Anal. 39(1), 214–249 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ružička, M.: Flow of shear dependent electrorheological fluids: unsteady space periodic case. Applied Nonlinear Analysis, pp. 485–504. Kluwer/Plenum, New York (1999)

  27. Ružička M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49(6), 565–609 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wolf J.: Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity. J. Math. Fluid Mech. 9(1), 104–138 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bum Ja Jin.

Additional information

Communicated by H. Beirão da Veiga

This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology 2010-0016694.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, HO., Jin, B.J. Regularity of Non-Newtonian Fluids. J. Math. Fluid Mech. 16, 225–241 (2014). https://doi.org/10.1007/s00021-013-0149-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0149-y

Keywords

Navigation