Skip to main content
Log in

Boundary Regularity of Shear Thickening Flows

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This article is concerned with the global regularity of weak solutions to systems describing the flow of shear thickening fluids under the homogeneous Dirichlet boundary condition. The extra stress tensor is given by a power law ansatz with shear exponent p≥ 2. We show that, if the data of the problem are smooth enough, the solution u of the steady generalized Stokes problem belongs to \({W^{1,(np+2-p)/(n-2)}(\Omega)}\) . We use the method of tangential translations and reconstruct the regularity in the normal direction from the system, together with anisotropic embedding theorem. Corresponding results for the steady and unsteady generalized Navier–Stokes problem are also formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche C., Girault V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslov. Math. J. 44(1), 109–140 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Beirão da Veiga H.: On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions. Comm. Pure Appl. Math. 58(4), 552–577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga H.: Navier–Stokes Equations with shear-thickening viscosity: regularity up to the boundary. J. Math. Fluid Mech. 11, 233–257 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Beirão da Veiga H.: Navier–Stokes equations with shear thinning viscosity: regularity up to the boundary. J. Math. Fluid Mech. 11, 258–273 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Beirão da Veiga H.: On non-Newtonian p-fluids. The pseudo-plastic case. J. Math. Anal. Appl. 344, 175–185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga H.: On the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations in smooth domains. The regularity problem. J. Eur. Math. Soc. 11, 127–167 (2009)

    Article  MATH  Google Scholar 

  7. Beirão da Veiga H.: On the global regularity of shear thinning flows in smooth domains. J. Math. Anal. Appl. 349, 335–360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga H.: Turbulence models, p-fluid flows, and W 2,l-regularity of solutions. Comm. Pure Appl. Anal. 8, 769–783 (2009)

    Article  MATH  Google Scholar 

  9. Bellout H., Bloom F., Nečas J.: Young measure-valued solutions for non-Newtonian incompressible fluids. Comm. PDE 19, 1763–1803 (1994)

    Article  MATH  Google Scholar 

  10. Berselli L.C.: On the W 2, q-regularity of incompressible fluids with shear-dependent viscosities: the shear-thinnig case. J. Math. Fluid Mech. 11, 171–185 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Berselli, L.C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. (2008). doi:10.1007/s00021-008-0277-y

  12. Bogovskiiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators div and grad. In: Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics (Novosibirsk). Trudy Sem. S. L. Soboleva, No. 1, vol. 1980, pp. 5–40, 149. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980)

  13. Bothe D., Prüss J.: L p-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39(2), 379–421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D.: On uniqueness and time regularity of flows of power-law like non-Newtonian fluids. Math. Methods Appl. Sci. (2010). doi:10.1002/mma.1314

  15. Consiglieri L.: Existence for a class of non-Newtonian fluids with energy transfer. J. Math. Fluid Mech. 2, 267–293 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Consiglieri L.: Weak solutions for a class of non-Newtonian fluids with a nonlocal friction boundary condition. Acta Math. Sin. 22, 523–534 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Consiglieri L.: Steady-state flows of thermal viscous incompressible fluids with convective-radiation effects. Math. Mod. Methods Appl. Sci. 16, 2013–2027 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Consiglieri, L., Rodrigues, J.F.: Steady-state Bingham flow with temperature dependent nonlocal parameters and friction. In: International Series of Numerical Mathematics, vol. 154, pp. 149–157. Birkhäuser, Switzerland (2006)

  19. Consiglieri L., Shilkin T.: Regularity to stationary weak solutions in the theory of generalized Newtonian fluids with energy transfer. J. Math. Sci. (N.Y.) 155, 2771–2788 (2003)

    Article  MathSciNet  Google Scholar 

  20. Crispo F.: Shear-thinning viscous fluids in cylindrical domains. Regularity up to the boundary. J. Math. Fluid Mech. 10, 311–325 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Crispo F.: Global regularity of a class of p-fluid flows in cylinders. J. Math. Anal. Appl. 341, 559–574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crispo F.: On the regularity of shear-thickening viscous fluids. Chin. Ann. Math. Ser. B 30, 273–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Crispo F., Grisanti C.: On the existence, uniqueness and \({C^{1, \gamma}(\overline{\Omega}) \cap W^{2, 2}(\Omega)}\) regularity for a class of shear-thinning fluids. J. Math. Fluid Mech. 10, 455–487 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Diening L., Ebmeyer C., Růžička M.: Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 45, 457–472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diening L., Málek J., Steinhauer M.: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM: Control Optim. Calc. Var. 14, 211–232 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Diening L., Růžička M.: Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech. 7, 413–450 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Diening L., Růžička M., Wolf J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids: Lipschitz truncation method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9(5), 1–46 (2010)

    MATH  Google Scholar 

  28. Ebmeyer C.: Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity. Math. Methods Appl. Sci. 29(14), 1687–1707 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Ebmeyer C., Frehse J.: Mixed boundary value problems for nonlinear elliptic equations in multidimensional non-smooth domains. Math. Nachr. 203, 47–74 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Ebmeyer C., Liu W.B., Steinhauer M.: Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains. Z. Anal. Anwendungen 24(2), 353–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Frehse J., Málek J., Steinhauer M.: An existence result for fluids with shear dependent viscosity–steady flows. Nonlinear Anal. Theory Methods Appl. 30, 3041–3049 (1997)

    Article  MATH  Google Scholar 

  32. Frehse, J., Málek, J., Steinhauer, M.: On existence result for fluids with shear dependent viscosity–unsteady flows. In: Jäger, W., Nečas, J., John, O., Najzar, K., Stará, J. (eds.) Partial Differential Equations, pp. 121–129. Chapman & Hall (2000)

  33. Frehse J., Málek J., Steinhauer M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34(5), 1064–1083 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kaplický P.: Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions. Z. Anal. Anwendungen 24(3), 467–486 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaplický P., Málek J., Stará J.: C 1,α-regularity of weak solutions to a class of nonlinear fluids in two dimensions—stationary Dirichlet problem. Zap. Nauchn. Sem. Pt. Odel. Mat. Inst. 259, 89–121 (1999)

    Google Scholar 

  36. Ladyzhenskaya O.A.: New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Proc. Stek. Inst. Math. 102, 95–118 (1967)

    Google Scholar 

  37. Ladyzhenskaya O.A.: On some modifications of the Navier–Stokes equations for large gradients of velocity. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 7, 126–154 (1968)

    MathSciNet  MATH  Google Scholar 

  38. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  39. Lions J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  40. Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary PDEs. In: Applied Mathematics and Mathematical Computations, vol. 13. Chapman & Hall, London (1996)

  41. Málek J., Nečas J., Růžička M.: On the non-Newtonian incompressible fluids. Math. Models Methods Appl. Sci. 3, 35–63 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Málek J., Nečas J., Růžička M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2. Adv. Differ. Equ. 6(3), 257–302 (2001)

    MATH  Google Scholar 

  43. Málek J., Rajagopal K.R., Růžička M.: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5, 789–812 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Růžička, M.: A note on steady flow of fluids with shear dependent viscosity. Nonlinear Anal. 30, 3029–3039 (1997); In: Proceedings of the Second World Congress of Nonlinear Analysts (Athens, 1996)

    Google Scholar 

  45. Růžička, M., Diening, L.: Non-Newtonian fluids and function spaces. In: Proceedings of NAFSA 2006, Prague, vol. 8, pp. 95–144 (2007)

  46. Shilkin, T.N.: Regularity up to the boundary of solutions to boundary-value problems of the theory of generalized Newtonian liquids. J. Math. Sci. (New York) 92(6), 4386–4403 (1998). Some questions of mathematical physics and function theory

  47. Troisi M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18, 3–24 (1969)

    MathSciNet  MATH  Google Scholar 

  48. Wolf J.: Existence of weak solutions to the equations of nonstationary motion of non-Newtonian fluids with shear-dependent viscosity. J. Math. Fluid Mech. 9, 104–138 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Beirão da Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Veiga, H.B., Kaplický, P. & Růžička, M. Boundary Regularity of Shear Thickening Flows. J. Math. Fluid Mech. 13, 387–404 (2011). https://doi.org/10.1007/s00021-010-0025-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-010-0025-y

Mathematics Subject Classification (2000)

Keywords

Navigation