Skip to main content
Log in

Remarks on the Convergence of Pseudospectra

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We establish the convergence of pseudospectra in Hausdorff distance for closed operators acting in different Hilbert spaces and converging in the generalised norm resolvent sense. As an assumption, we exclude the case that the limiting operator has constant resolvent norm on an open set. We extend the class of operators for which it is known that the latter cannot happen by showing that if the resolvent norm is constant on an open set, then this constant is the global minimum. We present a number of examples exhibiting various resolvent norm behaviours and illustrating the applicability of this characterisation compared to known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakrishnan A.V., Triggiani R.: Lack of generation of strongly continuous semigroups by the damped wave operator on H ×  H (or: The little engine that couldn’t). Appl. Math. Lett. Int. J. Rapid Publ. 6, 33–37 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bögli, S., Siegl, P., Tretter, C.: Approximations of spectra of Schrödinger operators with complex potential on \({\mathbb{R}^d}\). (2014) (in preparation)

  3. Böttcher A.: Pseudospectra and singular values of large convolution operators. J. Integral Equ. Appl. 6(3), 267–301 (1994)

    Article  MATH  Google Scholar 

  4. Böttcher A., Grudsky S.M., Silbermann B.: Norms of inverses, spectra, and pseudospectra of large truncated Wiener-Hopf operators and Toeplitz matrices. N. Y. J. Math. 3, 1–31 (1997)

    MATH  Google Scholar 

  5. Böttcher A., Silbermann B.: Introduction to large truncated Toeplitz matrices. Universitext. Springer, New York (1999)

    Book  Google Scholar 

  6. Böttcher, A., Wolf, H.: Spectral approximation for Segal-Bargmann space Toeplitz operators. In: Linear operators (Warsaw, 1994), vol. 38 of Banach Center Publ. Polish Acad. Sci., Warsaw, pp. 25–48 (1997)

  7. Brown B.M., Marletta M.: Spectral inclusion and spectral exactness for PDEs on exterior domains. IMA J. Numer. Anal. 24, 21–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaitin-Chatelin, F., Harrabi, A.: About definitions of pseudospectra of closed operators in Banach spaces. Technical Report TR/PA/98/08, CERFACS, Toulouse, France (1998)

  9. Clarkson J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936)

    Article  MathSciNet  Google Scholar 

  10. Davies E.B.: Pseudospectra of differential operators. J. Oper. Theory 43, 243–262 (2000)

    MATH  Google Scholar 

  11. Davies E.B.: Linear operators and their spectra. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  12. Davies, E.B., Shargorodsky, E.: Level sets of the resolvent norm of a linear operator revisited. arXiv:1408.2354 (2014)

  13. Engel K.-J., Nagel R.: A Short Course on Operator Semigroups. Springer, New York (2006)

    MATH  Google Scholar 

  14. Globevnik J.: On complex strict and uniform convexity. Proc. Am. Math. Soc. 47, 175–178 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Globevnik J.: Norm-constant analytic functions and equivalent norms. Ill. J. Math. 20, 503–506 (1976)

    MathSciNet  MATH  Google Scholar 

  16. Globevnik J., Vidav I.: On operator-valued analytic functions with constant norm. J. Funct. Anal. 15, 394–403 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansen A.C.: On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal. 254, 2092–2126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hansen A.C.: On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators. J. Am. Math. Soc. 24, 81–124 (2011)

    Article  MATH  Google Scholar 

  19. Harrabi A.: Pseudospectre d’une suite d’opérateurs bornés. RAIRO Modélisation Mathématique et Analyse Numérique 32, 671–680 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Helffer B.: Spectral theory and its applications. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  21. Kato T.: Perturbation theory for linear operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  22. Reddy S.C.: Pseudospectra of Wiener–Hopf integral operators and constant-coefficient differential operators. J. Integral Equ. Appl. 5, 369–403 (1993)

    Article  MATH  Google Scholar 

  23. Shargorodsky E.: On the level sets of the resolvent norm of a linear operator. Bull. Lond. Math. Soc. 40, 493–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shargorodsky E.: On the definition of pseudospectra. Bull. Lond. Math. Soc. 41, 524–534 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shargorodsky E.: Pseudospectra of semigroup generators. Bull. Lond. Math. Soc. 42, 1031–1034 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shargorodsky E., Shkarin S.: The level sets of the resolvent norm and convexity properties of Banach spaces. Archiv der Mathematik 93, 59–66 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trefethen L.N., Embree M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    Google Scholar 

  28. Tretter C.: Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London (2008)

    Book  MATH  Google Scholar 

  29. Weidmann J.: Strong operator convergence and spectral theory of ordinary differential operators. Universitatis Iagellonicae Acta Mathematica 34, 153–163 (1997)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Bögli.

Additional information

P. Siegl: On leave from Nuclear Physics Institute ASCR, 25068 Řež, Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bögli, S., Siegl, P. Remarks on the Convergence of Pseudospectra. Integr. Equ. Oper. Theory 80, 303–321 (2014). https://doi.org/10.1007/s00020-014-2178-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-014-2178-1

Mathematics Subject Classification

Keywords

Navigation