Skip to main content
Log in

Convergence of Sequences of Linear Operators and Their Spectra

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We establish spectral convergence results of approximations of unbounded non-selfadjoint linear operators with compact resolvents by operators that converge in generalized strong resolvent sense. The aim is to establish general assumptions that ensure spectral exactness, i.e. that every true eigenvalue is approximated and no spurious eigenvalues occur. A main ingredient is the discrete compactness of the sequence of resolvents of the approximating operators. We establish sufficient conditions and perturbation results for strong convergence and for discrete compactness of the resolvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselone, P.M., Palmer, T.W.: Spectral analysis of collectively compact, strongly convergent operator sequences. Pac. J. Math. 25, 423–431 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bailey, P.B., Everitt, W.N., Weidmann, J., Zettl, A.: Regular approximations of singular Sturm–Liouville problems. Results Math. 23(1–2), 3–22 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bögli, S.: Spectral approximation for linear operators and applications. Ph.D. thesis (2014)

  4. Bögli, S., Siegl, P.: Remarks on the convergence of pseudospectra. Integral Equ. Oper. Theory 80(3), 303–321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bögli, S., Siegl, P., Tretter, C.: Approximations of spectra of Schrödinger operators with complex potentials on \({\mathbb{R}}^d\). Commun. Partial Differ. Equ. (2017). doi:10.1080/03605302.2017.1330342

  6. Brown, B.M., Langer, M., Marletta, M., Tretter, C., Wagenhofer, M.: Eigenvalue enclosures and exclosures for non-self-adjoint problems in hydrodynamics. LMS J. Comput. Math. 13, 65–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, B.M., Marletta, M.: Spectral inclusion and spectral exactness for singular non-self-adjoint Sturm–Liouville problems. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2005), 117–139 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, B.M., Marletta, M.: Spectral inclusion and spectral exactness for singular non-self-adjoint Hamiltonian systems. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2036), 1987–2009 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, B.M., Marletta, M.: Spectral inclusion and spectral exactness for PDEs on exterior domains. IMA J. Numer. Anal. 24, 21–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chatelin, F.: Spectral Approximation of Linear Operators. Computer Science and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983). With a foreword by P. Henrici, with solutions to exercises by Mario Ahués

  11. Davies, E.B.: Spectral enclosures and complex resonances for general self-adjoint operators. LMS J. Comput. Math. 1, 42–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davies, E.B., Plum, M.: Spectral pollution. IMA J. Numer. Anal. 24(3), 417–438 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1987)

    Google Scholar 

  14. Grigorieff, R.D.: Diskret kompakte Einbettungen in Sobolewschen Räumen. Math. Ann. 197, 71–85 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hess, P., Kato, T.: Perturbation of closed operators and their adjoints. Comment. Math. Helv. 45, 524–529 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinchcliffe, J., Strauss, M.: Spectral enclosure and superconvergence for eigenvalues in gaps. Integral Equ. Oper. Theory 84(1), 1–32 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995). Reprint of the 1980 edition

    Book  MATH  Google Scholar 

  18. Leoni, G.: A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2009)

    Google Scholar 

  19. Levitin, M., Shargorodsky, E.: Spectral pollution and second-order relative spectra for self-adjoint operators. IMA J. Numer. Anal. 24(3), 393–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mertins, U., Zimmermann, S.: Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum. Z. Anal. Anwend. 14(2), 327–345 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Osborn, J.E.: Spectral approximation for compact operators. Math. Comput. Simul. 29, 712–725 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  24. Shargorodsky, E.: Geometry of higher order relative spectra and projection methods. J. Oper. Theory 44(1), 43–62 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Stummel, F.: Diskrete Konvergenz linearer Operatoren. I. Math. Ann. 190, 45–92 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stummel, F.: Diskrete Konvergenz linearer Operatoren. II. Math. Z. 120, 231–264 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tretter, C.: Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London (2008)

    Book  MATH  Google Scholar 

  28. Weidmann, J.: Lineare Operatoren in Hilberträumen. Teil I. Mathematische Leitfäden. [Mathematical Textbooks]. B. G. Teubner, Stuttgart (2000). Grundlagen. [Foundations]

  29. Weidmann, J.: Lineare Operatoren in Hilberträumen. Teil II. Mathematische Leitfäden. [Mathematical Textbooks]. B. G. Teubner, Stuttgart (2003). Anwendungen. [Applications]

Download references

Acknowledgements

The author would like to thank her doctoral advisor Christiane Tretter for the guidance. The work was supported by the Swiss National Science Foundation (SNF), Grant No. 200020_146477 and Early Postdoc.Mobility Project P2BEP2_159007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Bögli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bögli, S. Convergence of Sequences of Linear Operators and Their Spectra. Integr. Equ. Oper. Theory 88, 559–599 (2017). https://doi.org/10.1007/s00020-017-2389-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2389-3

Mathematics Subject Classification

Keywords

Navigation