Skip to main content

Advertisement

Log in

The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

5-azaC:

5-Azacytidine

5-caC:

5-Carboxylcytosine

5-fC:

5-Formylcytosine

5-hmC:

5-Hydroxymethylcytosine

5-mC:

5-Methylcytosine

AAV:

Adeno-associated virus

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ARG1:

Arginase 1

Aβ:

β-Amyloid peptide

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

BET:

Bromodomain and extraterminal domain

circRNAs:

Circular RNAs

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DA:

Dopaminergic

DAM:

Disease-associated microglia

DAMPs:

Damage-associated molecular patterns

DHEA:

Dehydroepiandrosterone

DNMTs:

DNA methyltransferases

EAE:

Experimental autoimmune encephalomyelitis

EVs:

Extracellular vesicles

EZH2:

Zeste homolog-2

FTO:

Fat mass and obesity-associated protein

GF:

Germ-free

GWAS:

Genome-wide association studies

H3K27:

Histone H3 at lysine 27

H3S10phK14ac:

Phospho(S10)-acetylation(K14) of histone H3

HD:

Huntington’s disease

HDACs:

Histone deacetylases

HMC3:

Human Microglia Clone 3

HMT:

Histone methyltransferase

hPSCs:

Human pluripotent stem cells

iMGs:

IPSCs-derived microglia

iPSCs:

Induced pluripotent stem cells

JMJD3:

Jumonji domain-containing 3

LDAM:

Lipid droplet-accumulating microglia

lncRNAs:

Long non-coding RNAs

Lnc-SNHG1:

LncRNA small nucleolar RNA host gene 1

LOAD:

Late-onset Alzheimer’s disease

m6A:

N6-methyladenosine

m6Am:

N6,2′-O-dimethyladenosine

MeCP2:

Methyl-CpG binding protein 2

METTL3:

Methyltransferase-like protein 3

MGnD:

Microglial neurodegenerative phenotype

MHC-II:

Major histocompatibility complex II

mHTT:

Mutant huntingtin

miRNAs:

MicroRNAs

MS:

Multiple sclerosis

NAMPs:

Neurodegeneration-associated molecular patterns

NF-κB:

Nuclear factor kappa-B

NRF2:

Nuclear factor erythroid 2-related factor 2

OXPHOS:

Oxidative phosphorylation

PAM:

Plaque-associated microglia

PAMPs:

Pathogen-associated molecular patterns

PD:

Parkinson's disease

PET:

Positron emission tomography

PRC2:

Polycomb repressive complex-2

PSCs:

Pluripotent stem cells

RACK1:

Receptor for activated c kinase 1

RBPs:

RNA binding proteins

rmTBI:

Repetitive mild TBI

ROS:

Reactive oxygen species

SAH:

S-Adenosylhomocysteine

SIRT1:

Sirtuin 1

SN:

Substantia nigra

SNHG1:

Small nucleolar RNA host gene 1

SOCS-1:

Suppressor of cytokine signaling 1

SPF:

Specific-pathogen-free

TBI:

Traumatic brain injury

TDP43:

TAR DNA-binding protein 43

TEM:

Transmission electron microscopy

TET:

Ten-eleven translocation

TREM2:

Triggering receptor expressed on myeloid cells 2

TSA:

Trichostatin A

TSPO:

18 KDa Translocator protein

TSS:

Transcriptional start sites

VPA:

Valproic acid

WAM:

White matter-associated microglia

References

  1. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  2. Poewe W et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13

    Article  PubMed  Google Scholar 

  3. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272. https://doi.org/10.1016/S1474-4422(16)30230-7

    Article  PubMed  Google Scholar 

  4. Selkoe DJ (2012) Preventing Alzheimer’s disease. Science 337(6101):1488–1492. https://doi.org/10.1126/science.1228541

    Article  CAS  PubMed  Google Scholar 

  5. Zaletel I et al (2018) Early impairments of hippocampal neurogenesis in 5xFAD mouse model of Alzheimer’s disease are associated with altered expression of SOXB transcription factors. J Alzheimers Dis 65(3):963–976. https://doi.org/10.3233/JAD-180277

    Article  CAS  PubMed  Google Scholar 

  6. Fahnestock M, Shekari A (2019) ProNGF and neurodegeneration in Alzheimer’s disease. Front Neurosci 13:129. https://doi.org/10.3389/fnins.2019.00129

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wightman DP et al (2020) Largest GWAS (N=1,126,563) of Alzheimer’s disease implicates microglia and immune cells. medRxiv. https://doi.org/10.1101/2020.11.20.20235275

    Article  Google Scholar 

  8. Seshadri S et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840. https://doi.org/10.1001/jama.2010.574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morabito S et al (2021) Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat Genet 53(8):1143–1155. https://doi.org/10.1038/s41588-021-00894-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179(2):292–311. https://doi.org/10.1016/j.cell.2019.08.053

    Article  CAS  PubMed  Google Scholar 

  11. von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524(18):3865–3895. https://doi.org/10.1002/cne.24040

    Article  Google Scholar 

  12. Sierra A, Paolicelli RC, Kettenmann H (2019) Cien Anos de Microglia: milestones in a century of microglial research. Trends Neurosci 42(11):778–792. https://doi.org/10.1016/j.tins.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  13. Le W, Wu J, Tang Y (2016) Protective microglia and their regulation in Parkinson’s disease. Front Mol Neurosci 9:89. https://doi.org/10.3389/fnmol.2016.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou N et al (2019) Transcriptional mechanism of IRF8 and PU.1 governs microglial activation in neurodegenerative condition. Protein Cell 10(2):87–103. https://doi.org/10.1007/s13238-018-0599-3

    Article  CAS  PubMed  Google Scholar 

  15. Gu X et al (2013) Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging 34(4):1069–1079. https://doi.org/10.1016/j.neurobiolaging.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  16. Ayata P et al (2018) Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci 21(8):1049–1060. https://doi.org/10.1038/s41593-018-0192-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thangaraj A et al (2020) Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. Int Rev Cell Mol Biol 350:285–325. https://doi.org/10.1016/bs.ircmb.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Zotova E et al (2013) Inflammatory components in human Alzheimer’s disease and after active amyloid-beta42 immunization. Brain 136(Pt 9):2677–2696. https://doi.org/10.1093/brain/awt210

    Article  PubMed  Google Scholar 

  19. Singh-Bains MK et al (2019) Altered microglia and neurovasculature in the Alzheimer’s disease cerebellum. Neurobiol Dis 132:104589. https://doi.org/10.1016/j.nbd.2019.104589

    Article  CAS  PubMed  Google Scholar 

  20. Pavese N et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66(11):1638–1643. https://doi.org/10.1212/01.wnl.0000222734.56412.17

    Article  CAS  PubMed  Google Scholar 

  21. Sapp E et al (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60(2):161–172. https://doi.org/10.1093/jnen/60.2.161

    Article  CAS  PubMed  Google Scholar 

  22. Cosenza-Nashat M et al (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35(3):306–328. https://doi.org/10.1111/j.1365-2990.2008.01006.x

    Article  CAS  PubMed  Google Scholar 

  23. Venneti S et al (2008) The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol 67(10):1001–1010. https://doi.org/10.1097/NEN.0b013e318188b204

    Article  PubMed  Google Scholar 

  24. Zhang L et al (2021) Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 11(2):373–393. https://doi.org/10.1016/j.apsb.2020.08.006

    Article  CAS  PubMed  Google Scholar 

  25. Pascoal TA et al (2021) Microglial activation and tau propagate jointly across Braak stages. Nat Med 27(9):1592–1599. https://doi.org/10.1038/s41591-021-01456-w

    Article  CAS  PubMed  Google Scholar 

  26. Joers V et al (2020) Microglia, inflammation and gut microbiota responses in a progressive monkey model of Parkinson’s disease: a case series. Neurobiol Dis 144:105027. https://doi.org/10.1016/j.nbd.2020.105027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deczkowska A et al (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173(5):1073–1081. https://doi.org/10.1016/j.cell.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  28. Subhramanyam CS et al (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120. https://doi.org/10.1016/j.semcdb.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  29. Cui W et al (2020) Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer’s disease. Front Neurosci 14:444. https://doi.org/10.3389/fnins.2020.00444

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sorrentino S et al (2021) Microglial heterogeneity and its potential role in driving phenotypic diversity of Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms22052780

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eikelenboom P et al (2012) Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer’s disease. Alzheimers Res Ther 4(3):15. https://doi.org/10.1186/alzrt118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blandini F (2013) Neural and immune mechanisms in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharm 8(1):189–201. https://doi.org/10.1007/s11481-013-9435-y

    Article  Google Scholar 

  33. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Design 16(25):2766–2778

    Article  CAS  Google Scholar 

  34. Association AS (2019) 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 15(3):321–387. https://doi.org/10.1016/j.jalz.2019.01.010

    Article  Google Scholar 

  35. Gao HM et al (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698. https://doi.org/10.1523/JNEUROSCI.0143-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benraiss A et al (2016) Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun 7:11758. https://doi.org/10.1038/ncomms11758

    Article  PubMed  PubMed Central  Google Scholar 

  37. Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 9(8):857–865. https://doi.org/10.1038/ni.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neumann M et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. https://doi.org/10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  39. Valekova I et al (2016) Revelation of the IFNalpha, IL-10, IL-8 and IL-1beta as promising biomarkers reflecting immuno-pathological mechanisms in porcine Huntington’s disease model. J Neuroimmunol 293:71–81. https://doi.org/10.1016/j.jneuroim.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  40. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Greenhalgh AD, David S, Bennett FC (2020) Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 21(3):139–152. https://doi.org/10.1038/s41583-020-0263-9

    Article  CAS  PubMed  Google Scholar 

  42. Bartels T, De Schepper S, Hong S (2020) Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science 370(6512):66–69. https://doi.org/10.1126/science.abb8587

    Article  CAS  PubMed  Google Scholar 

  43. Itagaki S et al (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182. https://doi.org/10.1016/0165-5728(89)90115-x

    Article  CAS  PubMed  Google Scholar 

  44. Yin, et al (2017) Immune hyperreactivity of Abeta plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging 55:115–122. https://doi.org/10.1016/j.neurobiolaging.2017.03.021

    Article  CAS  Google Scholar 

  45. Condello C et al (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques. Nat Commun 6:6176. https://doi.org/10.1038/ncomms7176

    Article  CAS  PubMed  Google Scholar 

  46. Marschallinger J et al (2020) Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 23(2):194–208. https://doi.org/10.1038/s41593-019-0566-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5

    Article  CAS  PubMed  Google Scholar 

  48. Song WM, Colonna M (2018) The identity and function of microglia in neurodegeneration. Nat Immunol 19(10):1048–1058. https://doi.org/10.1038/s41590-018-0212-1

    Article  CAS  PubMed  Google Scholar 

  49. Pena-Altamira E et al (2017) Nutritional and pharmacological strategies to regulate microglial polarization in cognitive aging and Alzheimer’s disease. Front Aging Neurosci 9:175. https://doi.org/10.3389/fnagi.2017.00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Businaro R et al (2018) Modulation of inflammation as a way of delaying Alzheimer’s disease progression: the diet’s role. Curr Alzheimer Res 15(4):363–380. https://doi.org/10.2174/1567205014666170829100100

    Article  CAS  PubMed  Google Scholar 

  51. Yang Z et al (2019) Platycodigenin as potential drug candidate for Alzheimer’s disease via modulating microglial polarization and neurite regeneration. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules24183207

    Article  PubMed Central  Google Scholar 

  52. Tarassishin L, Suh H-S, Lee SC (2014) LPS and IL-1 differentially activate mouse and human astrocytes: role of CD14. Glia. https://doi.org/10.1002/glia.22657

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ji J et al (2019) The intra-nuclear SphK2-S1P axis facilitates M1-to-M2 shift of microglia via suppressing HDAC1-mediated KLF4 deacetylation. Front Immunol 10:1241. https://doi.org/10.3389/fimmu.2019.01241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He Y et al (2020) IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. Neuroscience 437:161–171. https://doi.org/10.1016/j.neuroscience.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  55. Yu Z et al (2015) MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J Neurosci 35(16):6350–6365. https://doi.org/10.1523/JNEUROSCI.2468-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Y et al (2021) Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy. Angew Chem Int Ed Engl 60(10):5083–5090. https://doi.org/10.1002/anie.202010391

    Article  CAS  PubMed  Google Scholar 

  57. Zeng F et al (2018) Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia. Angew Chem Int Ed Engl 57(20):5808–5812. https://doi.org/10.1002/anie.201802309

    Article  CAS  PubMed  Google Scholar 

  58. Dumas AA, Borst K, Prinz M (2021) Current tools to interrogate microglial biology. Neuron 109(18):2805–2819. https://doi.org/10.1016/j.neuron.2021.07.004

    Article  CAS  PubMed  Google Scholar 

  59. Paolicelli RaS, Stevens A, Tremblay B, Aguzzi M-E, Ajami A, Amit B, Audinat I, Bechmann E, Bennett I, Bennett M, Bessis F, Biber A, Bilbo K, Blurton-Jones S, Boddeke M, Brites E, Brône D, Brown B, Butovsky GC, Carson O, Castellano MJ, Colonna B, Cowley M, Cunningham SA, Davalos C, De Jager D, De Strooper PL, Dénes B, Eggen A, Eyo BJL, Galea U, Garel E, Ginhoux S, Glass F, Gokce CK, Gomez-Nicola O, González D, Gordon B, Graeber S, Greenhalgh MB, Gressens AD, Greter P, Gutmann M, Haass DH, Heneka C, Heppner MT, Hong F, Jung S, Kettenmann S, Kipnis H, Koyama J, Lemke R, Lynch G, Majewska M, Malcangio A, Malm M, Mancuso T, Matteoli R, McColl M, Miron N, Molofsky VE, Monje AV, Mracsko M, Nadjar E, Neher A, Neniskyte JJ, Neumann U, Noda H, Peng M, Peri B, Perry F, Popovich HV, Priller PG, Ragozzino J, Ransohoff D, Salter RM, Schaefer MW, Schafer A, Schwartz DP, Simons M, Streit M, Tay WJ, Tsai TL, Verkhratsky L-H, von Bernhardi A, Wake R, Wittamer H, Wolf V, Wu SA, Wyss-Coray L-JT, (2022) Defining microglial states and nomenclature: a roadmap to 2030. https://doi.org/10.2139/ssrn.4065080

  60. Stratoulias V et al (2019) Microglial subtypes: diversity within the microglial community. EMBO J 38(17):e101997. https://doi.org/10.15252/embj.2019101997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwabenland M et al (2021) Analyzing microglial phenotypes across neuropathologies: a practical guide. Acta Neuropathol 142(6):923–936. https://doi.org/10.1007/s00401-021-02370-8

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sankowski R et al (2019) Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat Neurosci 22(12):2098–2110. https://doi.org/10.1038/s41593-019-0532-y

    Article  CAS  PubMed  Google Scholar 

  63. Li Y et al (2022) Decoding the temporal and regional specification of microglia in the developing human brain. Cell Stem Cell. https://doi.org/10.1016/j.stem.2022.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bottcher C et al (2019) Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 22(1):78–90. https://doi.org/10.1038/s41593-018-0290-2

    Article  CAS  PubMed  Google Scholar 

  65. Uriarte Huarte O et al (2021) Single-cell transcriptomics and in situ morphological analyses reveal microglia heterogeneity across the nigrostriatal pathway. Front Immunol 12:639613. https://doi.org/10.3389/fimmu.2021.639613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abellanas MA et al (2019) Midbrain microglia mediate a specific immunosuppressive response under inflammatory conditions. J Neuroinflamm 16(1):233. https://doi.org/10.1186/s12974-019-1628-8

    Article  CAS  Google Scholar 

  67. Mathys H et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21(2):366–380. https://doi.org/10.1016/j.celrep.2017.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Keren-Shaul H et al (2017) A Unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276-1290 e17. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  69. Wang Y et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160(6):1061–1071. https://doi.org/10.1016/j.cell.2015.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yerbury JJ et al (2016) Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem 137(4):489–505. https://doi.org/10.1111/jnc.13575

    Article  CAS  PubMed  Google Scholar 

  71. Singh N et al (2022) BACE-1 inhibition facilitates the transition from homeostatic microglia to DAM-1. Sci Adv 8(24):eabo1286. https://doi.org/10.1126/sciadv.abo1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ulrich JD et al (2014) Altered microglial response to Abeta plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener 9:20. https://doi.org/10.1186/1750-1326-9-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McQuade A et al (2020) Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease. Nat Commun 11(1):5370. https://doi.org/10.1038/s41467-020-19227-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leyns CEG et al (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 114(43):11524–11529. https://doi.org/10.1073/pnas.1710311114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krasemann S et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47(3):566-581 e9. https://doi.org/10.1016/j.immuni.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Safaiyan S et al (2021) White matter aging drives microglial diversity. Neuron 109(7):1100-1117 e10. https://doi.org/10.1016/j.neuron.2021.01.027

    Article  CAS  PubMed  Google Scholar 

  77. Toledo JB et al (2014) CSF Apo-E levels associate with cognitive decline and MRI changes. Acta Neuropathol 127(5):621–632. https://doi.org/10.1007/s00401-013-1236-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lopes KP et al (2022) Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nat Genet 54(1):4–17. https://doi.org/10.1038/s41588-021-00976-y

    Article  CAS  PubMed  Google Scholar 

  79. Coppieters N, Dragunow M (2011) Epigenetics in Alzheimer’s disease: a focus on DNA modifications. Curr Pharm Des 17(31):3398–3412. https://doi.org/10.2174/138161211798072544

    Article  CAS  PubMed  Google Scholar 

  80. Cho SH et al (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1beta. J Neurosci 35(2):807–818. https://doi.org/10.1523/JNEUROSCI.2939-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Matt MS, Lawson MA, Johnson RW (2016) Aging and peripheral lipopolysaccharide can modulate epigenetic regulators and decrease IL-1β promoter DNA methylation in microglia. Neurobiol Aging 47:1–9. https://doi.org/10.1016/j.neurobiolaging.2016.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matt SM et al (2018) Inhibition of DNA methylation with zebularine alters lipopolysaccharide-induced sickness behavior and neuroinflammation in mice. Front Neurosci 12:636. https://doi.org/10.3389/fnins.2018.00636

    Article  PubMed  PubMed Central  Google Scholar 

  83. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacol 38(1):23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  Google Scholar 

  84. Lin HC et al (2009) S-Adenosylhomocysteine increases beta-amyloid formation in BV-2 microglial cells by increased expressions of beta-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promoters. Neurotoxicology 30(4):622–627. https://doi.org/10.1016/j.neuro.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  85. Efimova OA et al (2020) Environmental epigenetics and genome flexibility: focus on 5-hydroxymethylcytosine. Int J Mol Sci. https://doi.org/10.3390/ijms21093223

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhao J et al (2017) A genome-wide profiling of brain DNA hydroxymethylation in Alzheimer’s disease. Alzheimers Dement 13(6):674–688. https://doi.org/10.1016/j.jalz.2016.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  87. Khare T et al (2012) 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol 19(10):1037–1043. https://doi.org/10.1038/nsmb.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Szulwach KE et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14(12):1607–1616. https://doi.org/10.1038/nn.2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hahn MA et al (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep 3(2):291–300. https://doi.org/10.1016/j.celrep.2013.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang Y et al (2020) Selective loss of 5hmC promotes neurodegeneration in the mouse model of Alzheimer’s disease. FASEB J 34(12):16364–16382. https://doi.org/10.1096/fj.202001271R

    Article  CAS  PubMed  Google Scholar 

  91. Li L et al (2020) Reduction of Tet2 exacerbates early stage Alzheimer’s pathology and cognitive impairments in 2×Tg-AD mice. Hum Mol Genet 29(11):1833–1852. https://doi.org/10.1093/hmg/ddz282

    Article  CAS  PubMed  Google Scholar 

  92. Celarain N et al (2016) TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clin Epigenet 8:37. https://doi.org/10.1186/s13148-016-0202-9

    Article  CAS  Google Scholar 

  93. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534. https://doi.org/10.1038/nrg.2017.33

    Article  CAS  PubMed  Google Scholar 

  94. He X-B et al (2015) Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells 33(4):1320–1332. https://doi.org/10.1002/stem.1932

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, et al (2013) Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13(2):237–245. https://doi.org/10.1016/j.stem.2013.05.006

    Article  CAS  Google Scholar 

  96. Cochran JN et al (2020) Non-coding and loss-of-function coding variants in TET2 are associated with multiple neurodegenerative diseases. Am J Hum Genet 106(5):632–645. https://doi.org/10.1016/j.ajhg.2020.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cull AH et al (2017) Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol 55:56-70 e13. https://doi.org/10.1016/j.exphem.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  98. Carrillo-Jimenez A et al (2019) TET2 regulates the neuroinflammatory response in microglia. Cell Rep 29(3):697-713 e8. https://doi.org/10.1016/j.celrep.2019.09.013

    Article  CAS  PubMed  Google Scholar 

  99. Stewart-Morgan KR, Petryk N, Groth A (2020) Chromatin replication and epigenetic cell memory. Nat Cell Biol 22(4):361–371. https://doi.org/10.1038/s41556-020-0487-y

    Article  CAS  PubMed  Google Scholar 

  100. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jambhekar A, Dhall A, Shi Y (2019) Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 20(10):625–641. https://doi.org/10.1038/s41580-019-0151-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun D et al (2017) LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 18(10):1801–1816. https://doi.org/10.15252/embr.201643668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349. https://doi.org/10.1038/nature09784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiang Y et al (2007) JMJD3 is a histone H3K27 demethylase. Cell Res 17(10):850–857. https://doi.org/10.1038/cr.2007.83

    Article  CAS  PubMed  Google Scholar 

  105. Tang Y et al (2014) Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ 21(3):369–380. https://doi.org/10.1038/cdd.2013.159

    Article  CAS  PubMed  Google Scholar 

  106. Alexaki VI et al (2018) DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol Psychiatr 23(6):1410–1420. https://doi.org/10.1038/mp.2017.167

    Article  CAS  Google Scholar 

  107. Datta M et al (2018) Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity 48(3):514-529 e6. https://doi.org/10.1016/j.immuni.2018.02.016

    Article  CAS  PubMed  Google Scholar 

  108. Sun XY et al (2019) HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. J Neuroinflamm 16(1):249. https://doi.org/10.1186/s12974-019-1640-z

    Article  CAS  Google Scholar 

  109. Kannan V et al (2013) Histone deacetylase inhibitors suppress immune activation in primary mouse microglia. J Neurosci Res 91(9):1133–1142. https://doi.org/10.1002/jnr.23221

    Article  CAS  PubMed  Google Scholar 

  110. Jiao F-Z et al (2018) Histone deacetylase 2 inhibitor CAY10683 alleviates lipopolysaccharide induced neuroinflammation through attenuating TLR4/NF-κB signaling pathway. Neurochem Res 43(6):1161–1170. https://doi.org/10.1007/s11064-018-2532-9

    Article  CAS  PubMed  Google Scholar 

  111. Xia M et al (2017) Proteomic analysis of HDAC3 selective inhibitor in the regulation of inflammatory response of primary microglia. Neural Plast. https://doi.org/10.1155/2017/6237351

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kim T et al (2019) HDAC inhibition by valproic acid induces neuroprotection and improvement of PD-like behaviors in LRRK2 R1441G transgenic mice. Exp Neurobiol 28(4):504–515. https://doi.org/10.5607/en.2019.28.4.504

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809. https://doi.org/10.1038/nrc2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Logotheti S, Putzer BM (2019) STAT3 and STAT5 targeting for simultaneous management of melanoma and autoimmune diseases. Cancers (Basel). https://doi.org/10.3390/cancers11101448

    Article  Google Scholar 

  115. Zhu X et al (2017) HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer’s disease. Aging Cell 16(5):1073–1082. https://doi.org/10.1111/acel.12642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lin FL et al (2019) HADC8 Inhibitor WK2–16 therapeutically targets lipopolysaccharide-induced mouse model of neuroinflammation and microglial activation. Int J Mol Sci. https://doi.org/10.3390/ijms20020410

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hsing CH et al (2015) Histone deacetylase inhibitor trichostatin A ameliorated endotoxin-induced neuroinflammation and cognitive dysfunction. Mediators Inflamm. https://doi.org/10.1155/2015/163140

    Article  PubMed  PubMed Central  Google Scholar 

  118. Su Q et al (2021) Trichostatin A ameliorates Alzheimer’s disease-related pathology and cognitive deficits by increasing albumin expression and Abeta clearance in APP/PS1 mice. Alzheimers Res Ther 13(1):7. https://doi.org/10.1186/s13195-020-00746-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jung KH et al (2015) RNA sequencing reveals distinct mechanisms underlying BET inhibitor JQ1-mediated modulation of the LPS-induced activation of BV-2 microglial cells. J Neuroinflamm 12:36. https://doi.org/10.1186/s12974-015-0260-5

    Article  CAS  Google Scholar 

  120. Rigillo G et al (2018) LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response. Brain Behav Immun 74:277–290. https://doi.org/10.1016/j.bbi.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  121. Pan RY et al (2022) Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab 34(4):634-648 e6. https://doi.org/10.1016/j.cmet.2022.02.013

    Article  CAS  PubMed  Google Scholar 

  122. Roundtree IA et al (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200. https://doi.org/10.1016/j.cell.2017.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shafik AM et al (2021) N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol 22(1):17. https://doi.org/10.1186/s13059-020-02249-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Han M et al (2020) Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease. Front Neurosci 14:98. https://doi.org/10.3389/fnins.2020.00098

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yao Y et al (2018) Pterostilbene and 4’-methoxyresveratrol inhibited lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages. Molecules. https://doi.org/10.3390/molecules23051148

    Article  PubMed  PubMed Central  Google Scholar 

  126. Szabo M, Gulya K (2013) Development of the microglial phenotype in culture. Neuroscience 241:280–295. https://doi.org/10.1016/j.neuroscience.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  127. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. https://doi.org/10.1146/annurev.immunol.021908.132532

    Article  CAS  PubMed  Google Scholar 

  128. Hsieh S-W et al (2020) M2b macrophage subset decrement as an indicator of cognitive function in Alzheimer’s disease. Psychiat Clin Neuros 74(7):383–391. https://doi.org/10.1111/pcn.13000

    Article  CAS  Google Scholar 

  129. Famenini S et al (2017) Increased intermediate M1–M2 macrophage polarization and improved cognition in mild cognitive impairment patients on ω-3 supplementation. FASEB J 31(1):148–160. https://doi.org/10.1096/fj.201600677RR

    Article  CAS  PubMed  Google Scholar 

  130. Liu Y et al (2019) The -methyladenosine (mA)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of mRNA. Am J Physiol-Cell Ph 317(4):C762–C775. https://doi.org/10.1152/ajpcell.00212.2019

    Article  CAS  Google Scholar 

  131. Gu X et al (2020) N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell Signal 69:109553. https://doi.org/10.1016/j.cellsig.2020.109553

    Article  CAS  PubMed  Google Scholar 

  132. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. https://doi.org/10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  133. Brettschneider J et al (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16(2):109–120. https://doi.org/10.1038/nrn3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gaudet AD et al (2018) MicroRNAs: roles in regulating neuroinflammation. Neuroscientist 24(3):221–245. https://doi.org/10.1177/1073858417721150

    Article  CAS  PubMed  Google Scholar 

  135. Karthikeyan A et al (2016) MicroRNAs: key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr Med Chem 23(30):3528–3546. https://doi.org/10.2174/0929867323666160814001040

    Article  CAS  PubMed  Google Scholar 

  136. Ponomarev ED et al (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70. https://doi.org/10.1038/nm.2266

    Article  CAS  PubMed  Google Scholar 

  137. Yao L et al (2018) MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease. J Neuroinflamm 15(1):13. https://doi.org/10.1186/s12974-018-1053-4

    Article  CAS  Google Scholar 

  138. Yao L et al (2019) MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. FASEB J 33(7):8648–8665. https://doi.org/10.1096/fj.201900363R

    Article  CAS  PubMed  Google Scholar 

  139. Pinto S et al (2017) Exosomes from NSC-34 Cells transfected with hSOD1-G93A are enriched in miR-124 and drive alterations in microglia phenotype. Front Neurosci 11:273. https://doi.org/10.3389/fnins.2017.00273

    Article  PubMed  PubMed Central  Google Scholar 

  140. Edwards G 3rd, Moreno-Gonzalez I, Soto C (2017) Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochem Biophys Res Commun 483(4):1137–1142. https://doi.org/10.1016/j.bbrc.2016.07.123

    Article  CAS  PubMed  Google Scholar 

  141. Huang S et al (2018) Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J 32(1):512–528. https://doi.org/10.1096/fj.201700673R

    Article  CAS  PubMed  Google Scholar 

  142. Ge X et al (2020) Increased microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive outcome after rmTBI. Mol Ther 28(2):503–522. https://doi.org/10.1016/j.ymthe.2019.11.017

    Article  CAS  PubMed  Google Scholar 

  143. Wu Y, Yao J, Feng K (2020) miR-124-5p/NOX2 axis modulates the ROS production and the inflammatory microenvironment to protect against the cerebral I/R injury. Neurochem Res 45(2):404–417. https://doi.org/10.1007/s11064-019-02931-0

    Article  CAS  PubMed  Google Scholar 

  144. Li Z et al (2021) M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics 11(3):1232–1248. https://doi.org/10.7150/thno.48761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Woodbury ME et al (2015) miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. J Neurosci 35(26):9764–9781. https://doi.org/10.1523/JNEUROSCI.4790-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Butovsky O et al (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77(1):75–99. https://doi.org/10.1002/ana.24304

    Article  CAS  PubMed  Google Scholar 

  147. Junker A et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132(Pt 12):3342–3352. https://doi.org/10.1093/brain/awp300

    Article  PubMed  Google Scholar 

  148. Cardoso AL et al (2012) miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 135(1):73–88. https://doi.org/10.1111/j.1365-2567.2011.03514.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yin H, Song S, Pan X (2017) Knockdown of miR-155 protects microglia against LPS-induced inflammatory injury via targeting RACK1: a novel research for intracranial infection. J Inflamm (Lond) 14:17. https://doi.org/10.1186/s12950-017-0162-7

    Article  CAS  Google Scholar 

  150. Guedes JR et al (2014) Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum Mol Genet 23(23):6286–6301. https://doi.org/10.1093/hmg/ddu348

    Article  CAS  PubMed  Google Scholar 

  151. Li P et al (2019) MicroRNA-155 promotes heat stress-induced inflammation via targeting liver X receptor alpha in microglia. Front Cell Neurosci 13:12. https://doi.org/10.3389/fncel.2019.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Llorens F et al (2017) MicroRNA expression in the locus coeruleus, entorhinal cortex, and hippocampus at early and middle stages of braak neurofibrillary tangle pathology. J Mol Neurosci 63(2):206–215. https://doi.org/10.1007/s12031-017-0971-4

    Article  CAS  PubMed  Google Scholar 

  153. Saba R et al (2012) MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS ONE 7(2):e30832. https://doi.org/10.1371/journal.pone.0030832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Butovsky O et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122(9):3063–3087. https://doi.org/10.1172/JCI62636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liang C et al (2021) MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer’s disease. Theranostics 11(9):4103–4121. https://doi.org/10.7150/thno.53418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Song J, Oh Y, Lee JE (2015) miR-Let7A Modulates Autophagy Induction in LPS-Activated Microglia. Exp Neurobiol 24(2):117–125. https://doi.org/10.5607/en.2015.24.2.117

    Article  PubMed  PubMed Central  Google Scholar 

  157. Li Y et al (2019) Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1. Autophagy 15(3):478–492. https://doi.org/10.1080/15548627.2018.1522467

    Article  CAS  PubMed  Google Scholar 

  158. Zhang L et al (2012) miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 60(12):1888–1895. https://doi.org/10.1002/glia.22404

    Article  PubMed  Google Scholar 

  159. Yao H et al (2014) MiR-9 promotes microglial activation by targeting MCPIP1. Nat Commun 5:4386. https://doi.org/10.1038/ncomms5386

    Article  CAS  PubMed  Google Scholar 

  160. Brites D (2020) Regulatory function of microRNAs in microglia. Glia 68(8):1631–1642. https://doi.org/10.1002/glia.23846

    Article  PubMed  Google Scholar 

  161. Guo Y et al (2019) MicroRNAs in microglia: how do MicroRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci 12:125. https://doi.org/10.3389/fnmol.2019.00125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ye Y et al (2018) A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP- induced neuroinflammation. Cell Death Dis 9(8):803. https://doi.org/10.1038/s41419-018-0821-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cai LJ et al (2020) LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 13(1):130. https://doi.org/10.1186/s13041-020-00656-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mathy NW et al (2021) A novel long intergenic non-coding RNA, Nostrill, regulates iNOS gene transcription and neurotoxicity in microglia. J Neuroinflamm 18(1):16. https://doi.org/10.1186/s12974-020-02051-5

    Article  CAS  Google Scholar 

  165. Cao B et al (2018) Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson’s disease via regulating miR-7/NLRP3 pathway. Neuroscience 388:118–127. https://doi.org/10.1016/j.neuroscience.2018.07.019

    Article  CAS  PubMed  Google Scholar 

  166. Ashwal-Fluss R et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66. https://doi.org/10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  167. Rybak-Wolf A et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885. https://doi.org/10.1016/j.molcel.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  168. Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51. https://doi.org/10.1016/j.jbiotec.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  169. Curry-Hyde A et al (2020) Cell type-specific circular RNA expression in human glial cells. Genomics 112(6):5265–5274. https://doi.org/10.1016/j.ygeno.2020.09.042

    Article  CAS  PubMed  Google Scholar 

  170. Zhang Y et al (2017) Microarray analysis of circular RNA expression patterns in polarized macrophages. Int J Mol Med 39(2):373–379. https://doi.org/10.3892/ijmm.2017.2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ng WL et al (2016) Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biol 13(9):861–871. https://doi.org/10.1080/15476286.2016.1207036

    Article  PubMed  PubMed Central  Google Scholar 

  172. Dube U et al (2019) An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci 22(11):1903–1912. https://doi.org/10.1038/s41593-019-0501-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jiang F et al (2022) Circ_0000518 promotes macrophage/microglia M1 polarization via the FUS/CaMKKbeta/AMPK pathway to aggravate multiple sclerosis. Neuroscience 490:131–143. https://doi.org/10.1016/j.neuroscience.2021.12.012

    Article  CAS  PubMed  Google Scholar 

  174. Zhang T et al (2021) The emerging role of exosomes in Alzheimer’s disease. Ageing Res Rev 68:101321. https://doi.org/10.1016/j.arr.2021.101321

    Article  CAS  PubMed  Google Scholar 

  175. Vaz AR et al (2019) Phenotypic effects of wild-type and mutant SOD1 expression in N9 murine microglia at steady state, inflammatory and immunomodulatory conditions. Front Cell Neurosci 13:109. https://doi.org/10.3389/fncel.2019.00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Herrmann IK, Wood MJA, Fuhrmann G (2021) Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 16(7):748–759. https://doi.org/10.1038/s41565-021-00931-2

    Article  CAS  PubMed  Google Scholar 

  177. Thompson AG et al (2016) Extracellular vesicles in neurodegenerative disease-pathogenesis to biomarkers. Nat Rev Neurol 12(6):346–357. https://doi.org/10.1038/nrneurol.2016.68

    Article  CAS  PubMed  Google Scholar 

  178. Song Y et al (2019) M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 9(10):2910–2923. https://doi.org/10.7150/thno.30879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kojima R et al (2018) Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun 9(1):1305. https://doi.org/10.1038/s41467-018-03733-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Duan L et al (2021) Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale 13(3):1387–1397. https://doi.org/10.1039/d0nr07622h

    Article  CAS  PubMed  Google Scholar 

  181. Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 20(4):207–220. https://doi.org/10.1038/s41576-018-0089-8

    Article  CAS  PubMed  Google Scholar 

  182. Jones PL et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191. https://doi.org/10.1038/561

    Article  CAS  PubMed  Google Scholar 

  183. Cronk JC et al (2015) Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli. Immunity 42(4):679–691. https://doi.org/10.1016/j.immuni.2015.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  185. Goodall GJ, Wickramasinghe VO (2021) RNA in cancer. Nat Rev Cancer 21(1):22–36. https://doi.org/10.1038/s41568-020-00306-0

    Article  CAS  PubMed  Google Scholar 

  186. Cryan JF et al (2020) The gut microbiome in neurological disorders. Lancet Neurol 19(2):179–194. https://doi.org/10.1016/S1474-4422(19)30356-4

    Article  CAS  PubMed  Google Scholar 

  187. Qian XH et al (2021) Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota. Ageing Res Rev 68:101317. https://doi.org/10.1016/j.arr.2021.101317

    Article  CAS  PubMed  Google Scholar 

  188. Erny D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sampson TR et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469-1480 e12. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459–472. https://doi.org/10.1083/jcb.201709069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bertram L et al (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83(5):623–632. https://doi.org/10.1016/j.ajhg.2008.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yu JT et al (2014) Triggering receptor expressed on myeloid cells 2 variant is rare in late-onset Alzheimer’s disease in Han Chinese individuals. Neurobiol Aging 35(4):937 e1–3. https://doi.org/10.1016/j.neurobiolaging.2013.10.075

    Article  CAS  PubMed  Google Scholar 

  193. Wang P et al (2018) Lack of association between triggering receptor expressed on myeloid cells 2 polymorphism rs75932628 and late-onset Alzheimer’s disease in a Chinese Han population. Psychiatr Genet 28(1):16–18. https://doi.org/10.1097/YPG.0000000000000188

    Article  CAS  PubMed  Google Scholar 

  194. Ma J et al (2014) Association study of TREM2 polymorphism rs75932628 with late-onset Alzheimer’s disease in Chinese Han population. Neurol Res 36(10):894–896. https://doi.org/10.1179/1743132814Y.0000000376

    Article  CAS  PubMed  Google Scholar 

  195. Wang S et al (2020) Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J Exp Med. https://doi.org/10.1084/jem.20200785

    Article  PubMed  PubMed Central  Google Scholar 

  196. Gratuze M, Leyns CEG, Holtzman DM (2018) New insights into the role of TREM2 in Alzheimer’s disease. Mol Neurodegener 13(1):66. https://doi.org/10.1186/s13024-018-0298-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Griciuc A et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78(4):631–643. https://doi.org/10.1016/j.neuron.2013.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Griciuc A et al (2019) TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron 103(5):820-835 e7. https://doi.org/10.1016/j.neuron.2019.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wissfeld J et al (2021) Reporter cell assay for human CD33 validated by specific antibodies and human iPSC-derived microglia. Sci Rep 11(1):13462. https://doi.org/10.1038/s41598-021-92434-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Deming Y et al (2019) The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aau2291

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tansey KE, Cameron D, Hill MJ (2018) Genetic risk for Alzheimer’s disease is concentrated in specific macrophage and microglial transcriptional networks. Genome Med 10(1):14. https://doi.org/10.1186/s13073-018-0523-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. McQuade A, Blurton-Jones M (2019) Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol 431(9):1805–1817. https://doi.org/10.1016/j.jmb.2019.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wu KM et al (2021) The role of the immune system in Alzheimer’s disease. Ageing Res Rev 70:101409. https://doi.org/10.1016/j.arr.2021.101409

    Article  CAS  PubMed  Google Scholar 

  204. Habes M et al (2021) The Brain Chart of Aging: Machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans. Alzheimers Dement 17(1):89–102. https://doi.org/10.1002/alz.12178

    Article  CAS  PubMed  Google Scholar 

  205. Lu Y et al (2020) Reprogramming to recover youthful epigenetic information and restore vision. Nature 588(7836):124–129. https://doi.org/10.1038/s41586-020-2975-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Fisher EMC, Bannerman DM (2019) Mouse models of neurodegeneration: know your question, know your mouse. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaq1818

    Article  PubMed  PubMed Central  Google Scholar 

  207. Smith AM, Dragunow M (2014) The human side of microglia. Trends Neurosci 37(3):125–135. https://doi.org/10.1016/j.tins.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  208. Masuda T et al (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566(7744):388–392. https://doi.org/10.1038/s41586-019-0924-x

    Article  CAS  PubMed  Google Scholar 

  209. Gosselin D et al (2017) An environment-dependent transcriptional network specifies human microglia identity. Science. https://doi.org/10.1126/science.aal3222

    Article  PubMed  PubMed Central  Google Scholar 

  210. Maloney B et al (2007) Important differences between human and mouse APOE gene promoters: limitation of mouse APOE model in studying Alzheimer’s disease. J Neurochem 103(3):1237–1257. https://doi.org/10.1111/j.1471-4159.2007.04831.x

    Article  CAS  PubMed  Google Scholar 

  211. Friedman BA et al (2018) Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep 22(3):832–847. https://doi.org/10.1016/j.celrep.2017.12.066

    Article  CAS  PubMed  Google Scholar 

  212. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  213. Tang Y et al (2017) Direct reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neurons. Front Mol Neurosci 10:359. https://doi.org/10.3389/fnmol.2017.00359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chen SW et al (2021) Efficient conversion of human induced pluripotent stem cells into microglia by defined transcription factors. Stem Cell Rep 16(5):1363–1380. https://doi.org/10.1016/j.stemcr.2021.03.010

    Article  CAS  Google Scholar 

  215. McQuade A et al (2018) Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener 13(1):67. https://doi.org/10.1186/s13024-018-0297-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Claes C et al (2019) Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimers Dement 15(3):453–464. https://doi.org/10.1016/j.jalz.2018.09.006

    Article  PubMed  Google Scholar 

  217. Mancuso R et al (2019) Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat Neurosci 22(12):2111–2116. https://doi.org/10.1038/s41593-019-0525-x

    Article  CAS  PubMed  Google Scholar 

  218. Douvaras P et al (2017) Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Rep 8(6):1516–1524. https://doi.org/10.1016/j.stemcr.2017.04.023

    Article  CAS  Google Scholar 

  219. Haenseler W et al (2017) A highly efficient human pluripotent stem cell microglia model displays a neuronal-Co-culture-specific expression profile and inflammatory response. Stem Cell Rep 8(6):1727–1742. https://doi.org/10.1016/j.stemcr.2017.05.017

    Article  CAS  Google Scholar 

  220. Muffat J et al (2016) Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 22(11):1358–1367. https://doi.org/10.1038/nm.4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Pandya H et al (2017) Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 20(5):753–759. https://doi.org/10.1038/nn.4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Xu R et al (2020) Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat Commun 11(1):1577. https://doi.org/10.1038/s41467-020-15411-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Pocock JM, Piers TM (2018) Modelling microglial function with induced pluripotent stem cells: an update. Nat Rev Neurosci 19(8):445–452. https://doi.org/10.1038/s41583-018-0030-3

    Article  CAS  PubMed  Google Scholar 

  224. Speicher AM et al (2019) Generating microglia from human pluripotent stem cells: novel in vitro models for the study of neurodegeneration. Mol Neurodegener 14(1):46. https://doi.org/10.1186/s13024-019-0347-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Piers TM et al (2020) A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC-derived microglia. FASEB J 34(2):2436–2450. https://doi.org/10.1096/fj.201902447R

    Article  CAS  PubMed  Google Scholar 

  226. Garcia-Reitboeck P et al (2018) Human induced pluripotent stem cell-derived microglia-like cells harboring TREM2 missense mutations show specific deficits in phagocytosis. Cell Rep 24(9):2300–2311. https://doi.org/10.1016/j.celrep.2018.07.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Brownjohn PW et al (2018) Functional studies of missense TREM2 mutations in human stem cell-derived microglia. Stem Cell Rep 10(4):1294–1307. https://doi.org/10.1016/j.stemcr.2018.03.003

    Article  CAS  Google Scholar 

  228. Liu T et al (2020) Multi-omic comparison of Alzheimer’s variants in human ESC-derived microglia reveals convergence at APOE. J Exp Med. https://doi.org/10.1084/jem.20200474

    Article  PubMed  PubMed Central  Google Scholar 

  229. Konttinen H et al (2019) PSEN1DeltaE9, APPswe, and APOE4 confer disparate phenotypes in human iPSC-derived microglia. Stem Cell Rep 13(4):669–683. https://doi.org/10.1016/j.stemcr.2019.08.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to the authors whose work might have been unintentionally omitted due to space limitations. We would like to thank Dr. Hao Deng from the third Xiangya Hospital of Central South University for providing helpful discussions.

Funding

This study was funded by the National Key R&D Program of China [No. 2022ZD0213700], National Natural Sciences Foundation of China [No. 81801200 to YT; 81901223 to FY], Hunan Provincial Natural Science Foundation of China [No. 2019JJ40476 to YT; 2022JJ40824 to JW], Talents Startup Fund [No. 2209090550 to YT] and Youth Science Foundation [No. 2021Q04 to JW] of Xiangya Hospital, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Contributions

YT conceived this study. CL and YT prepared the draft and figures. YT, CL, JR, MZ, HW, FY and JW discussed and revised the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yu Tang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ren, J., Zhang, M. et al. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell. Mol. Life Sci. 79, 511 (2022). https://doi.org/10.1007/s00018-022-04536-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04536-3

Keywords

Navigation