Skip to main content
Log in

Impaired primordial follicle assembly in offspring ovaries from zearalenone-exposed mothers involves reduced mitochondrial activity and altered epigenetics in oocytes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Previous works have shown that zearalenone (ZEA), as an estrogenic pollutant, has adverse effects on mammalian folliculogenesis. In the present study, we found that prolonged exposure of female mice to ZEA around the end of pregnancy caused severe impairment of primordial follicle formation in the ovaries of newborn mice and altered the expression of many genes in oocytes as revealed by single-cell RNA sequencing (scRNA-seq). These changes were associated with morphological and molecular alterations of mitochondria, increased autophagic markers in oocytes, and epigenetic changes in the ovaries of newborn mice from ZEA-exposed mothers. The latter increased expression of HDAC2 deacetylases was leading to decreased levels of H3K9ac and H4K12ac. Most of these modifications were relieved when the expression of  Hdac2 in newborn ovaries was reduced by RNA interference during in vitro culture in the presence of ZEA. Such changes were also alleviated in offspring ovaries from mothers treated with both ZEA and the coenzyme Q10 (CoQ10), which is known to be able to restore mitochondrial activities. We concluded that impaired mitochondrial activities in oocytes caused by ZEA are at the origin of metabolic alterations that modify the expression of genes controlling autophagy and primordial follicle assembly through changes in epigenetic histones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All primary data and material in the manuscript are available upon reasonable request. The ovarian single-cell RNA sequencing data reported in this paper is NCBI GEO: GSE134339 and GSA: CRA003017.

Abbreviations

ACA:

Acetyl coenzyme A

BW:

Body weight

CA:

Citric acid

CoQ10:

Coenzyme Q10

DEG:

Differential expression gene

E17.5:

Embryonic 17.5 day

E2:

17β-Estradiol

ETC:

Electron transport chain

GEMs:

Gel bead emulsions

HAT:

Histone acetyltransferase

HDAC2:

Histone deacetylase 2

HRP:

Horseradish peroxidase

IF:

Immunofluorescence

IHC:

Immunohistochemistry

KAT2A:

Lysine acetyltransferase 2A

MMP:

Mitochondrial membrane potential

OR:

Ovarian reserve

PCOS:

Polycystic ovarian syndrome

PD0:

Postnatal 0 day

PF:

Primordial follicle

PFA:

Paraformaldehyde

PVDF:

Polyvinylidene fluoride membrane

RT-qPCR:

Real-time quantitative PCR

RNAi:

RNA interference

ROS:

Reactive oxygen species

scRNA-seq:

Single-cell RNA sequencing

TCA:

Tricarboxylic acid

tSNE:

T-distributed stochastic neighbor embedding

TEM:

Transmission electron microscopy

UMAP:

Uniform manifold approximation and projection

ZEA:

Zearalenone

References

  1. Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M, Liu Z, Min Z, Hu H, Jing Y, He X, Sun L, Ma L, Esteban CR, Chan P, Qiao J, Zhou Q, Izpisua Belmonte JC, Qu J, Tang F, Liu GH (2020) Single-cell transcriptomic atlas of primate ovarian aging. Cell 180(3):585-600 e19. https://doi.org/10.1016/j.cell.2020.01.009

    Article  CAS  PubMed  Google Scholar 

  2. He Y, Chen Q, Dai J, Cui Y, Zhang C, Wen X, Li J, Xiao Y, Peng X, Liu M, Shen B, Sha J, Hu Z, Li J, Shu W (2021) Single-cell RNA-Seq reveals a highly coordinated transcriptional program in mouse germ cells during primordial follicle formation. Aging Cell 20(7):e13424. https://doi.org/10.1111/acel.13424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang C, Zhou B, Xia G (2017) Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 74(14):2547–2566. https://doi.org/10.1007/s00018-017-2480-6

    Article  CAS  PubMed  Google Scholar 

  4. Niu W, Spradling AC (2020) Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci 117(33):20015–20026. https://doi.org/10.1073/pnas.2005570117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang JJ, Ge W, Zhai QY, Liu JC, Sun XW, Liu WX, Li L, Lei CZ, Dyce PW, De Felici M, Shen W (2020) Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol 18(12):e3001025. https://doi.org/10.1371/journal.pbio.3001025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kong L, Zhao AH, Wang QW, Feng YQ, Yan ZH, Li MH, Zhang FL, Wang H, Shen KY, Liu Y, Sun YJ, Shen W, Li L (2021) Maternal Zearalenone exposure impacted ovarian follicle formation and development of suckled offspring. Sci Total Environ 788:147792. https://doi.org/10.1016/j.scitotenv.2021.147792

    Article  CAS  PubMed  Google Scholar 

  7. Li F, Ding J, Cong Y, Liu B, Miao J, Wu D, Wang L (2020) Trichostatin A alleviated ovarian tissue damage caused by cigarette smoke exposure. Reprod Toxicol 93:89–98. https://doi.org/10.1016/j.reprotox.2020.01.006

    Article  CAS  PubMed  Google Scholar 

  8. Zhang MY, Tian Y, Yan ZH, Li WD, Zang CJ, Li L, Sun XF, Shen W, Cheng SF (2020) Maternal Bisphenol S exposure affects the reproductive capacity of F1 and F2 offspring in mice. Environ Pollut 267:115382. https://doi.org/10.1016/j.envpol.2020.115382

    Article  CAS  PubMed  Google Scholar 

  9. Liu JC, Li L, Yan HC, Zhang T, Zhang P, Sun ZY, De Felici M, Reiter RJ, Shen W (2019) Identification of oxidative stress-related Xdh gene as a di(2-ethylhexyl)phthalate (DEHP) target and the use of melatonin to alleviate the DEHP-induced impairments in newborn mouse ovaries. J Pineal Res 67(1):e12577. https://doi.org/10.1111/jpi.12577

    Article  CAS  PubMed  Google Scholar 

  10. da Costa CS, Oliveira TF, Freitas-Lima LC, Padilha AS, Krause M, Carneiro M, Salgado BS, Graceli JB (2021) Subacute cadmium exposure disrupts the hypothalamic-pituitary-gonadal axis, leading to polycystic ovarian syndrome and premature ovarian failure features in female rats. Environ Pollut 269:116154. https://doi.org/10.1016/j.envpol.2020.116154

    Article  CAS  PubMed  Google Scholar 

  11. Gruber-Dorninger C, Jenkins T, Schatzmayr G (2019) Global mycotoxin occurrence in feed: a ten-year survey. Toxins (Basel). https://doi.org/10.3390/toxins11070375

    Article  Google Scholar 

  12. Rai A, Das M, Tripathi A (2019) Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr 60(16):2710–2729. https://doi.org/10.1080/10408398.2019.1655388

    Article  CAS  PubMed  Google Scholar 

  13. Ropejko K, Twaruzek M (2021) Zearalenone and its metabolites-general overview, occurrence, and toxicity. Toxins (Basel). https://doi.org/10.3390/toxins13010035

    Article  Google Scholar 

  14. Zhu L, Yuhan J, Huang K, He X, Liang Z, Xu W (2021) Multidimensional analysis of the epigenetic alterations in toxicities induced by mycotoxins. Food Chem Toxicol 153:112251. https://doi.org/10.1016/j.fct.2021.112251

    Article  CAS  PubMed  Google Scholar 

  15. Rajendran P, Ammar RB, Al-Saeedi FJ, Mohamed ME, ElNaggar MA, Al-Ramadan SY, Bekhet GM, Soliman AM (2020) Kaempferol inhibits zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-mediated Nrf2 signaling pathway: in vitro and in vivo studies. Int J Mol Sci. https://doi.org/10.3390/ijms22010217

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang D, Jiang X, Sun J, Li X, Li X, Jiao R, Peng Z, Li Y, Bai W (2018) Toxic effects of zearalenone on gametogenesis and embryonic development: a molecular point of review. Food Chem Toxicol 119:24–30. https://doi.org/10.1016/j.fct.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Applegate T (2020) Zearalenone (ZEN) in livestock and poultry: dose, toxicokinetics, toxicity and estrogenicity. Toxins 12(6):377. https://doi.org/10.3390/toxins12060377

    Article  CAS  PubMed Central  Google Scholar 

  18. Zhao F, Li R, Xiao S, Diao H, El Zowalaty AE, Ye X (2014) Multigenerational exposure to dietary zearalenone (ZEA), an estrogenic mycotoxin, affects puberty and reproduction in female mice. Reprod Toxicol 47:81–88. https://doi.org/10.1016/j.reprotox.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gajecka M, Zielonka L, Gajecki M (2015) The effect of low monotonic doses of zearalenone on selected reproductive tissues in pre-pubertal female dogs—a review. Molecules 20(11):20669–20687. https://doi.org/10.3390/molecules201119726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan S, Ge W, Wang J, Liu W, Zhao Y, Shen W, Li L (2020) Zearalenone-induced aberration in the composition of the gut microbiome and function impacts the ovary reserve. Chemosphere 244:125493. https://doi.org/10.1016/j.chemosphere.2019.125493

    Article  CAS  PubMed  Google Scholar 

  21. Liu JC, Yan ZH, Li B, Yan HC, De Felici M, Shen W (2021) Di (2-ethylhexyl) phthalate impairs primordial follicle assembly by increasing PDE3A expression in oocytes. Environ Pollut 270:116088. https://doi.org/10.1016/j.envpol.2020.116088

    Article  CAS  PubMed  Google Scholar 

  22. Liu WX, Donatella F, Tan SJ, Ge W, Wang JJ, Sun XF, Cheng SF, Shen W (2021) Detrimental effect of Bisphenol S in mouse germ cell cyst breakdown and primordial follicle assembly. Chemosphere 264(Pt 1):128445. https://doi.org/10.1016/j.chemosphere.2020.128445

    Article  CAS  PubMed  Google Scholar 

  23. Wang JJ, Tian Y, Li MH, Feng YQ, Kong L, Zhang FL, Shen W (2021) Single-cell transcriptome dissection of the toxic impact of Di (2-ethylhexyl) phthalate on primordial follicle assembly. Theranostics 11(10):4992–5009. https://doi.org/10.7150/thno.55006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen Y, Breen K, Pepling ME (2009) Estrogen can signal through multiple pathways to regulate oocyte cyst breakdown and primordial follicle assembly in the neonatal mouse ovary. J Endocrinol 202(3):407–417. https://doi.org/10.1677/JOE-09-0109

    Article  CAS  PubMed  Google Scholar 

  25. Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J (2017) Environmental influences on ovarian dysgenesis—developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 13(7):400–414. https://doi.org/10.1038/nrendo.2017.36

    Article  PubMed  Google Scholar 

  26. Huang D, Cui L, Sajid A, Zainab F, Wu Q, Wang X, Yuan Z (2019) The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food Chem Toxicol 123:595–601. https://doi.org/10.1016/j.fct.2018.10.059

    Article  CAS  PubMed  Google Scholar 

  27. Zheng W, Wang B, Si M, Zou H, Song R, Gu J, Yuan Y, Liu X, Zhu G, Bai J, Bian J, Liu Z (2018) Zearalenone altered the cytoskeletal structure via ER stress-autophagy-oxidative stress pathway in mouse TM4 Sertoli cells. Sci Rep 8(1):3320. https://doi.org/10.1038/s41598-018-21567-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. So MY, Tian Z, Phoon YS, Sha S, Antoniou MN, Zhang J, Wu RS, Tan-Un KC (2014) Gene expression profile and toxic effects in human bronchial epithelial cells exposed to zearalenone. PLoS ONE 9(5):e96404. https://doi.org/10.1371/journal.pone.0096404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tatay E, Espin S, Garcia-Fernandez AJ, Ruiz MJ (2017) Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicol In Vitro 45(Pt 3):334–339. https://doi.org/10.1016/j.tiv.2017.04.026

    Article  CAS  PubMed  Google Scholar 

  30. Liu KH, Sun XF, Feng YZ, Cheng SF, Li B, Li YP, Shen W, Li L (2017) The impact of Zearalenone on the meiotic progression and primordial follicle assembly during early oogenesis. Toxicol Appl Pharmacol 329:9–17. https://doi.org/10.1016/j.taap.2017.05.024

    Article  CAS  PubMed  Google Scholar 

  31. Ben Salem I, Boussabbeh M, Prola A, Guilbert A, Bacha H, Lemaire C, Abid-Essefi S (2016) Crocin protects human embryonic kidney cells (HEK293) from alpha- and beta-Zearalenol-induced ER stress and apoptosis. Environ Sci Pollut Res Int 23(15):15504–15514. https://doi.org/10.1007/s11356-016-6741-y

    Article  CAS  PubMed  Google Scholar 

  32. Fan W, Shen T, Ding Q, Lv Y, Li L, Huang K, Yan L, Song S (2017) Zearalenone induces ROS-mediated mitochondrial damage in porcine IPEC-J2 cells. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.21944

    Article  PubMed  Google Scholar 

  33. Tian Y, Zhang MY, Zhao AH, Kong L, Wang JJ, Shen W, Li L (2021) Single-cell transcriptomic profiling provides insights into the toxic effects of Zearalenone exposure on primordial follicle assembly. Theranostics 11(11):5197–5213. https://doi.org/10.7150/thno.58433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gnainsky Y, Zfanya N, Elgart M, Omri E, Brandis A, Mehlman T, Itkin M, Malitsky S, Adamski J, Soen Y (2021) Systemic regulation of host energy and oogenesis by microbiome-derived mitochondrial coenzymes. Cell Rep 34(1):108583. https://doi.org/10.1016/j.celrep.2020.108583

    Article  CAS  PubMed  Google Scholar 

  35. Wang ZH, Liu Y, Chaitankar V, Pirooznia M, Xu H (2019) Electron transport chain biogenesis activated by a JNK-insulin-Myc relay primes mitochondrial inheritance in Drosophila. Elife. https://doi.org/10.7554/eLife.49309

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhu D, Wu X, Zhou J, Li X, Huang X, Li J, Wu J, Bian Q, Wang Y, Tian Y (2020) NuRD mediates mitochondrial stress-induced longevity via chromatin remodeling in response to acetyl-CoA level. Sci Adv 6(31):eabb2529. https://doi.org/10.1126/sciadv.abb2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sivanand S, Viney I, Wellen KE (2018) Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem Sci 43(1):61–74. https://doi.org/10.1016/j.tibs.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  38. Lozoya OA, Wang T, Grenet D, Wolfgang TC, Sobhany M, Ganini da Silva D, Riadi G, Chandel N, Woychik RP, Santos JH (2019) Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation and gene expression. Life Sci Alliance. https://doi.org/10.26508/lsa.201800228

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang GL, Sun XF, Feng YZ, Li B, Li YP, Yang F, Nyachoti CM, Shen W, Sun SD, Li L (2017) Zearalenone exposure impairs ovarian primordial follicle formation via down-regulation of Lhx8 expression in vitro. Toxicol Appl Pharmacol 317:33–40. https://doi.org/10.1016/j.taap.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  40. Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, Naranian T, Chi M, Wang Y, Bentov Y, Alexis J, Meriano J, Sung HK, Gasser DL, Moley KH, Hekimi S, Casper RF, Jurisicova A (2015) Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14(5):887–895. https://doi.org/10.1111/acel.12368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y-Y, Sun Y-C, Sun X-F, Cheng S-F, Li B, Zhang X-F, De Felici M, Shen W (2017) Starvation at birth impairs germ cell cyst breakdown and increases autophagy and apoptosis in mouse oocytes. Cell Death Dis 8(2):e2613-e. https://doi.org/10.1038/cddis.2017.3

    Article  CAS  Google Scholar 

  42. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 21(6):805–821. https://doi.org/10.1016/j.cmet.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  43. Schroeder S, Pendl T, Zimmermann A, Eisenberg T, Carmona-Gutierrez D, Ruckenstuhl C, Marino G, Pietrocola F, Harger A, Magnes C, Sinner F, Pieber TR, Dengjel J, Sigrist SJ, Kroemer G, Madeo F (2014) Acetyl-coenzyme A: a metabolic master regulator of autophagy and longevity. Autophagy 10(7):1335–1337. https://doi.org/10.4161/auto.28919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V, Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A, Moustafa T, Sprenger A, Jany E, Buttner S, Carmona-Gutierrez D, Ruckenstuhl C, Ring J, Reichelt W, Schimmel K, Leeb T, Moser C, Schatz S, Kamolz LP, Magnes C, Sinner F, Sedej S, Frohlich KU, Juhasz G, Pieber TR, Dengjel J, Sigrist SJ, Kroemer G, Madeo F (2014) Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19(3):431–444. https://doi.org/10.1016/j.cmet.2014.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marino G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, Schroeder S, Pendl T, Harger A, Niso-Santano M, Zamzami N, Scoazec M, Durand S, Enot DP, Fernandez AF, Martins I, Kepp O, Senovilla L, Bauvy C, Morselli E, Vacchelli E, Bennetzen M, Magnes C, Sinner F, Pieber T, Lopez-Otin C, Maiuri MC, Codogno P, Andersen JS, Hill JA, Madeo F, Kroemer G (2014) Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell 53(5):710–725. https://doi.org/10.1016/j.molcel.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  46. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, Bomze D, Elena-Herrmann B, Scherf T, Nissim-Rafinia M, Kempa S, Itskovitz-Eldor J, Meshorer E, Aberdam D, Nahmias Y (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21(3):392–402. https://doi.org/10.1016/j.cmet.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  47. Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19(11):1298–1306. https://doi.org/10.1038/ncb3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL (2017) Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546(7658):381–386. https://doi.org/10.1038/nature22405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma P, Pan H, Montgomery RL, Olson EN, Schultz RM (2012) Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. Proc Natl Acad Sci USA 109(8):E481–E489. https://doi.org/10.1073/pnas.1118403109

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ma P, Schultz RM (2013) Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. PLoS Genet 9(3):e1003377. https://doi.org/10.1371/journal.pgen.1003377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma P, Schultz RM (2016) HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos: Specificity versus compensation. Cell Death Differ 23(7):1119–1127. https://doi.org/10.1038/cdd.2016.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang J-J, Ge W, Zhai Q-Y, Liu J-C, Sun X-W, Liu W-X, Li L, Lei C-Z, Dyce PW, De Felici M, Shen W (2019) Transcriptome landscape reveals underlying mechanisms of ovarian cell fate differentiation and primordial follicle assembly. BioRxiv. https://doi.org/10.1101/803767

    Article  Google Scholar 

  53. Moresi V, Carrer M, Grueter CE, Rifki OF, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2012) Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc Natl Acad Sci USA 109(5):1649–1654. https://doi.org/10.1073/pnas.1121159109

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 108(10):4123–4128. https://doi.org/10.1073/pnas.1015081108

    Article  PubMed  PubMed Central  Google Scholar 

  55. Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, Xie LX, Salviati L, Hurd TW, Vega-Warner V, Killen PD, Raphael Y, Ashraf S, Ovunc B, Schoeb DS, McLaughlin HM, Airik R, Vlangos CN, Gbadegesin R, Hinkes B, Saisawat P, Trevisson E, Doimo M, Casarin A, Pertegato V, Giorgi G, Prokisch H, Rotig A, Nurnberg G, Becker C, Wang S, Ozaltin F, Topaloglu R, Bakkaloglu A, Bakkaloglu SA, Muller D, Beissert A, Mir S, Berdeli A, Varpizen S, Zenker M, Matejas V, Santos-Ocana C, Navas P, Kusakabe T, Kispert A, Akman S, Soliman NA, Krick S, Mundel P, Reiser J, Nurnberg P, Clarke CF, Wiggins RC, Faul C, Hildebrandt F (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121(5):2013–2024. https://doi.org/10.1172/JCI45693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peng M, Falk MJ, Haase VH, King R, Polyak E, Selak M, Yudkoff M, Hancock WW, Meade R, Saiki R, Lunceford AL, Clarke CF, Gasser DL (2008) Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet 4(4):e1000061. https://doi.org/10.1371/journal.pgen.1000061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, Dimauro S, Hirano M (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79(6):1125–1129. https://doi.org/10.1086/510023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Y, Song W, Wang J, Wang T, Xiong X, Qi Z, Fu W, Yang X, Chen YG (2020) Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med. https://doi.org/10.1084/jem.20191130

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ge W, Wang JJ, Zhang RQ, Tan SJ, Zhang FL, Liu WX, Li L, Sun XF, Cheng SF, Dyce PW, De Felici M, Shen W (2021) Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cell Mol Life Sci 78(2):695–713. https://doi.org/10.1007/s00018-020-03533-8

    Article  CAS  PubMed  Google Scholar 

  60. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339(6116):211–214. https://doi.org/10.1126/science.1227166

    Article  CAS  PubMed  Google Scholar 

  61. De Felici M, Lobascio AM, Klinger FG (2008) Cell death in fetal oocytes: many players for multiple pathways. Autophagy 4(2):240–242. https://doi.org/10.4161/auto.5410

    Article  PubMed  Google Scholar 

  62. Escobar ML, Echeverria OM, Ortiz R, Vazquez-Nin GH (2008) Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis 13(10):1253–1266. https://doi.org/10.1007/s10495-008-0248-z

    Article  CAS  PubMed  Google Scholar 

  63. Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB 3rd (2011) Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction 141(6):759–765. https://doi.org/10.1530/REP-10-0489

    Article  CAS  PubMed  Google Scholar 

  64. Sun YC, Sun XF, Dyce PW, Shen W, Chen H (2017) The role of germ cell loss during primordial follicle assembly: a review of current advances. Int J Biol Sci 13(4):449–457. https://doi.org/10.7150/ijbs.18836

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sun X, Klinger FG, Liu J, De Felici M, Shen W, Sun X (2020) miR-378-3p maintains the size of mouse primordial follicle pool by regulating cell autophagy and apoptosis. Cell Death Dis. https://doi.org/10.1038/s41419-020-02965-1

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hulas-Stasiak M, Dobrowolski P, Tomaszewska E (2016) Prenatally administered dexamethasone impairs folliculogenesis in spiny mouse offspring. Reprod Fertil Dev 28(7):1038–1048. https://doi.org/10.1071/RD14224

    Article  CAS  PubMed  Google Scholar 

  67. D’Ignazio L, Michel M, Beyer M, Thompson K, Forabosco A, Schlessinger D, Pelosi E (2018) Lhx8 ablation leads to massive autophagy of mouse oocytes associated with DNA damage. Biol Reprod 98(4):532–542. https://doi.org/10.1093/biolre/iox184

    Article  PubMed  PubMed Central  Google Scholar 

  68. He M, Zhang T, Zhu Z, Qin S, Wang H, Zhao L, Zhang X, Hu J, Wen J, Cai H, Xin Q, Guo Q, Lin L, Zhou B, Zhang H, Xia G, Wang C (2020) LSD1 contributes to programmed oocyte death by regulating the transcription of autophagy adaptor SQSTM1/p62. Aging Cell 19(3):e13102. https://doi.org/10.1111/acel.13102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Klinger FG, Rossi V, De Felici M (2015) Multifaceted programmed cell death in the mammalian fetal ovary. Int J Dev Biol 59(1–3):51–54. https://doi.org/10.1387/ijdb.150063fk

    Article  CAS  PubMed  Google Scholar 

  70. Shen Y, Wei W, Zhou DX (2015) Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci 20(10):614–621. https://doi.org/10.1016/j.tplants.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  71. Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC (2014) Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther 10(3):469–478. https://doi.org/10.4103/0973-1482.137937

    Article  CAS  PubMed  Google Scholar 

  72. Zhang T, He M, Zhao L, Qin S, Zhu Z, Du X, Zhou B, Yang Y, Liu X, Xia G, Chen T, Wang Y, Zhang H, Wang C (2021) HDAC6 regulates primordial follicle activation through mTOR signaling pathway. Cell Death Dis 12(6):559. https://doi.org/10.1038/s41419-021-03842-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miao Y, Cui Z, Gao Q, Rui R, Xiong B (2020) Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep 32(5):107987. https://doi.org/10.1016/j.celrep.2020.107987

    Article  CAS  PubMed  Google Scholar 

  74. Zhang H, Pan Z, Ju J, Xing C, Li X, Shan M, Sun S (2020) DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. J Animal Sci Biotechnol. https://doi.org/10.1186/s40104-020-00489-4

    Article  Google Scholar 

  75. Babayev E, Seli E (2015) Oocyte mitochondrial function and reproduction. Curr Opin Obstet Gynecol 27(3):175–181. https://doi.org/10.1097/GCO.0000000000000164

    Article  PubMed  PubMed Central  Google Scholar 

  76. May-Panloup P, Boucret L, Chao de la Barca J-M, Desquiret-Dumas V, Ferré-L’Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P (2016) Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 22(6):725–743. https://doi.org/10.1093/humupd/dmw028

    Article  CAS  PubMed  Google Scholar 

  77. Chappel S (2013) The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int 2013:183024. https://doi.org/10.1155/2013/183024

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yang Q, Cong L, Wang Y, Luo X, Li H, Wang H, Zhu J, Dai S, Jin H, Yao G, Shi S, Hsueh AJ, Sun Y (2020) Increasing ovarian NAD+ levels improve mitochondrial functions and reverse ovarian aging. Free Radical Biol Med 156:1–10. https://doi.org/10.1016/j.freeradbiomed.2020.05.003

    Article  CAS  Google Scholar 

  79. Rodríguez-Varela C, Labarta E (2020) Clinical application of antioxidants to improve human oocyte mitochondrial function: a review. Antioxidants 9(12):1197. https://doi.org/10.3390/antiox9121197

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Science & Technology Fund Planning Projects of Qingdao City (21-1-4-ny-7-nsh), Natural Science Foundation of Shandong Province (ZR202103020217) and Taishan Scholar Foundation of Shandong Province (ts20190946).

Author information

Authors and Affiliations

Authors

Contributions

WS, LL and J-JW designed the study. Y-QF, M-HL performed the experiments for this work. YT analyzed the single-cell RNA sequence data in this study. Y-QF, J-JW and MDeF wrote the manuscript. LL and A-HZ provided funding. All the authors contributed to discussion of the study and revision of this manuscript.

Corresponding author

Correspondence to Wei Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

C57/BL6 mouse breeding conditions and treatment methods in this experiment strictly complied with the Animal Care and Ethical Committee of Qingdao Agricultural University.

Consent for publication

All the authors have read and approved the final version of the manuscript and agreed to its publication in Cellular and Molecular Life Sciences.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Cell types identified in newborn mouse ovaries. (a) Subdivision of the ovarian cell populations into 18 clusters by tSNE analysis. (b) Heatmap of the top 10 marker genes of each cell cluster. (c) Violin plots of the marker genes of the six different ovarian cell populations. (d) Subdivision of the ovarian cell populations into 18 clusters by UMAP analysis. (e) Classification of the ovarian cell population into six different types by UMAP. Supplementary Fig. 2 Subdivision of the oocyte clustering according to the PF formation stages and effects of ZEA on MMP in the ovaries. (a) Subdivision of the oocyte populations into 10 clusters (upper) distributed within pre-, early- and late-follicle stages (below) by tSNE analysis. (b) Heatmap of top 5 marker genes of three PF formation stages. (c) Measure of the MMP in PD3 offspring ovaries by JC-1 dye; MMP is indicated by a decrease in the red (PE-A, JC-1 aggregates)/green (FITC-A, monomeric JC-1) fluorescence intensity ratio; no difference between CTRL and ZEA groups of PD3 ovaries was observed. All analyses were repeated at least three times on different samples. Data are shown as mean ± SD (*P < 0.05; **P < 0.01). Supplementary Fig. 3 ZEA treatment impairs mitochondrial function in newborn mouse oocytes. (a) Enrichment analysis of 134 down-regulated genes (upper) and 194 up-regulated genes (below) in PD0 offspring ovaries from ZEA-exposed mothers. (b) Enrichment analysis of 210 down-regulated genes (upper) and 196 up-regulated genes in PD3 offspring ovaries (below). Supplementary Fig. 4 ZEA treatment affects the expression of mitochondrial electron transport chain related genes in mouse oocytes. Violin plots show the expression level of DEGs that encoding mitochondrial electron transport chain subunits in the four experimental group. Supplementary Fig. 5 Effects of ZEA on the expression of HAT, HDAC and H3K23, H4K16ac. (a) mRNA levels of Hdac2 and Sirt1 deacetylases and Kat2a acetylase in PD3 offspring ovaries. (b) WB for SIRT1 and KAT2A in the same above ovaries. All analyses were repeated at least three times on different samples. (c) The localization of KAT2A in the PD3 mouse ovaries. (d) Representative WB brands and quantification of H3K23ac and H4K16ac with ZEA treatment in PD3 ovaries. (e) Representative WB bands and quantification of H3K23ac and H4K16ac level in newborn ovaries cultured for three days with Hdac2 RNAi in vitro. All analyses were repeated at least three times on different samples. Data are shown as mean ± SD (*P < 0.05; **P < 0.01). Supplementary Fig. 6 Inhibition of Hdac2 expression alleviated the inhibitory effect of ZEA on PF formation. (a) Representative images of MVH staining with ZEA treatment and/or Hdac2-RNAi on PD0 ovaries cultured in vitro for 3 days; scale bar = 50 μm and 10 μm. (b) Number of MVH positive oocytes (upper) and the percentage of oocytes in cysts or in PF (below) in the five experimental groups, the data were calculated as mean counting of eight sections per ovary. Each group at least forty sections from five ovaries as analyzed. All analyses were repeated at least three times on different samples. Data are shown as mean ± SD (*P < 0.05; **P < 0.01). Supplementary Fig. 7 The administration of CoQ10 alleviated the DNA damage caused by ZEA in oocytes. (a) Representative images of double staining with MVH and γ-H2AX in the four experimental groups ovaries at PD3. Scale bar = 50 μm. (b) Percentage of MVH and γ-H2AX double-positive oocytes in each group. (c) Representative WB brands and quantification of γ-H2AX protein in each group. All analyses were repeated at least three times on different samples. Data are shown as mean ± SD (*P < 0.05; **P < 0.01) (PDF 1832 kb)

Supplementary file2 (DOC 44 kb)

Supplementary file3 (DOCX 20 kb)

Supplementary file4 (DOCX 16 kb)

Supplementary file5 (XLSX 65 kb)

Supplementary file6 (XLSX 50 kb)

Supplementary file7 (XLSX 11 kb)

Supplementary file8 (XLSX 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, YQ., Wang, JJ., Li, MH. et al. Impaired primordial follicle assembly in offspring ovaries from zearalenone-exposed mothers involves reduced mitochondrial activity and altered epigenetics in oocytes. Cell. Mol. Life Sci. 79, 258 (2022). https://doi.org/10.1007/s00018-022-04288-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04288-0

Keywords

Navigation