Skip to main content

Advertisement

Log in

Crocin protects human embryonic kidney cells (HEK293) from α- and β-Zearalenol-induced ER stress and apoptosis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) are the major metabolites of Zearalenone (ZEN) and are known to induce many toxic effects. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in α- and β-ZOL-mediated toxicity in human kidney cells (HEK293) and evaluated the effect of a common dietary compound Crocin (CRO), from saffron. We show that α- and β-ZOL treatment induces ER stress as evidenced by the upregulation of the 78 kDa glucose-regulated protein (GRP78) and the Growth arrest and DNA damage-inducible protein (GADD34). Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm) and activation of caspases. We also demonstrate that the antioxidant properties of CRO help to prevent ER stress and reduce α- and β-ZOL-induced apoptosis in HEK293 cells. Our results suggest that saffron consumption might be helpful to prevent α- and β-ZOL-induced ER stress and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ZEN:

Zearalenone

α-ZOL:

α-Zearalenol

β-ZOL:

β-Ζearalenol

CRO:

Crocin

ER:

endoplasmic reticulum

ΔΨm:

mitochondrial transmembrane potential

mtO2·- :

mitochondrial superoxide anion

UPR:

unfolded protein response

References

  • Abbes S, Ouanes Z, Ben Salah-Abbes J, Houas Z, Oueslati R, Bacha H (2006a) The protective effect of hydrated sodium calcium aluminosilicate against haematological, biochemical and pathological changes induced by zearalenone in mice. Toxicon 47:567–574

  • Abbes S, Salah-Abbes JB, Ouanes Z, Houas Z, Othman O, Bacha H (2006b) Preventive role of phyllosilicate clay on the immunological and biochemical toxicity of zearalenone in Balb/c mice. Int Immunopharmacol 6:1251–1258

  • Abid-Essefi S, Baudrimont I, Hassen W, Ouanes Z, Mobio TA, Anane R (2003) DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by vitamin E. Toxicology 192:237–248

    Article  CAS  Google Scholar 

  • Abid-Essefi S, Ouanes Z, Hassen W, Baudrimont I, Creppy E, Bacha H (2004) Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol In Vitro 18:467–474

    Article  CAS  Google Scholar 

  • Abid-Essefi S, Zaied C, Bouaziz C, Ben Salem I, Kaderi R, Bacha H (2012) Protective effect of aqueous extract of Allium sativum against zearalenone toxicity mediated by oxidative stress. Exp Toxicol Pathol 64:689–695

    Article  CAS  Google Scholar 

  • Assimopoulou AN, Sinakos Z, Papageorgiou VP (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 19:997–1000

    Article  CAS  Google Scholar 

  • Ayed-Boussema I, Ouanes Z, Bacha H, Abid S (2007) Toxicities induced in cultured cells exposed to zearalenone: apoptosis or mutagenesis? J Biochem Mol Toxicol 639:85–92

    Google Scholar 

  • Banjerdpongchai R, Kongtawelert P, Khantamat O, Srisomsap C, Chokchaichamnankit D, Subhasitanont P, Svasti J (2010) Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells. J Hematol Oncol 3:1–16

    Article  Google Scholar 

  • Ben Salah-Abbes J, Abbes S, Abdel-Wahhab M, Oueslati R (2009) Raphanus sativus extract protects against zearalenone induced reproductive toxicity, oxidative stress and mutagenic alterations in male Balb/c mice. Toxicon 53:525–533

    Article  CAS  Google Scholar 

  • Ben Salem I, Prola A, Boussabbeh M, Guilbert A, Bacha H, Abid-Essefi S, Lemaire C (2015). Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress Chaperones. In press. DOI 10.1007/s12192-015-0613-0

  • Biehl ML, Prelusky DB, Koritz GD, Hartin KE, Buck WB, Trenholm HL (1993) Biliary-excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicol Appl Pharmacol 121:152–159

    Article  CAS  Google Scholar 

  • Bolhassani A, Khavari A, Bathaie SZ (2014) Saffron and natural carotenoids: biochemical activities and anti-tumor effects. Biochim Biophys Acta 1845:20–30

    CAS  Google Scholar 

  • Bouaziz C, Abid-Essefi S, El Golli E, Bacha H (2007) Cytotoxicity and apoptosis induction by the mycotoxin zearalenone and its metabolites alpha and beta zearalenol in the human Caco-2 cells. Toxicol Lett 172:62–69

    Article  Google Scholar 

  • Bouaziz C, Sharaf el dein O, El Golli E, Abid-Essefi S, Brenner C, Lemaire C, Bacha H (2008) Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicology 254:19–28

    Article  CAS  Google Scholar 

  • Bravin F, Duca RC, Balaguer P, Delaforge M (2009) In vitro cytochrome P450 formation of a mono-hydroxylated metabolite of zearalenone exhibiting estrogenic activities: possible occurrence of this metabolite in vivo. Int J Mol Sci 10:1824–1837

    Article  CAS  Google Scholar 

  • Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  CAS  Google Scholar 

  • Chang WM, Lin JK (1984) Transformation of zearalenone and zearalenol by erythrocytes. Food Chem Toxicol 22:887–891

    Article  CAS  Google Scholar 

  • Chen T, Wong YS (2009) Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int J Biochem Cell Biol 41:666–676

    Article  CAS  Google Scholar 

  • Conkova E, Laciakova A, Pastorova B, Seidel Kovac G (2001) The effect of zearalenone on some enzymatic parameters in rabbits. Toxicol Lett 121:145–149

    Article  CAS  Google Scholar 

  • Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970

    Article  CAS  Google Scholar 

  • Cudna RE, Dickson AJ (2003) Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol Bioeng 81:56–65

    Article  CAS  Google Scholar 

  • El Golli E, Hassen W, Bouslimi A, Bouaziz C, Ladjimi MM, Bacha H (2006) Induction of Hsp 70 in Vero cells in response to mycotoxins cytoprotection by sub-lethal heat shock and by vitamin E. Toxicol Lett 166:122–130

    Article  Google Scholar 

  • Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  CAS  Google Scholar 

  • Hassen W, Ayed-Boussema I, Oscoz AA, De Cerain Lopez A, Bacha H (2007) The role of oxidative stress in zearalenone-mediated toxicity in Hep G2 cells: oxidative DNA damage, glutathione depletion and stress proteins induction. Toxicology 232:294–302

    Article  CAS  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A (2005) Protective effect of aqueous saffron extract (Crocus sativus L.) and Crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci 8(3):387–393

    CAS  Google Scholar 

  • Hosseinzadeh H, Modaghegh MH, Saffari Z (2009) Crocus sativus L. (Saffron) extract and its active constituents (Crocin and Safranal) on ischemia-reperfusion in rat skeletal muscle. Evid Based Complement Alternat Med 6(3):343–350

    Article  Google Scholar 

  • Hosseinzadeh H, Shamsaie F, Mehri S (2010) Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents crocin and safranal. Pharmacogn Mag 5(20):419–424

    Google Scholar 

  • Jimbo A, Fujita E, Kouroku Y, Ohnishi J, Inohara N, Kuida K, Sakamaki K, Yonehara S, Momoi T (2003) ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 283:156–166

    Article  CAS  Google Scholar 

  • Kawabata K, Tung NH, Shoyama Y, Sugie S, Mori T, Tanaka T (2012) Dietary Crocin inhibits colitis and colitis-associated colorectal carcinogenesis in male ICR mice. Evid Based Complement Alternat Med 8:204–215

    Google Scholar 

  • Kuiper-Goodman T, Scott PM, Watanabe H (1987) Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol 7:253–306

    Article  CAS  Google Scholar 

  • Lari P, Abnous K, Imenshahidi M, Rashedinia M, Razavi M, Hosseinzadeh H (2013) Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin. Toxicol. Ind. Health

  • Le Bel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2-,7-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  Google Scholar 

  • Le Bras M, Clément MV, Pervaiz S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–220

    Google Scholar 

  • Lee IA, Lee JH, Baek NI, Kim DH (2005) Antihyperlipidemic effect of Crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull 28:2106–2110

    Article  CAS  Google Scholar 

  • Liang ZS, MA YJ, Liu CY, Deng XB, Fan XL, Yan HK, Hu QX (2010) In vivo toxicity of zearalenone on liver and kidney in mice. Chinese J Vet Sci 30:673–676

    CAS  Google Scholar 

  • Lu J, Yu JY, Lim SS, Son YO, Kim DH, Lee SA, Shi X, Lee JC (2013) Cellular mechanisms of the cytotoxic effects of the zearalenone metabolites α-zearalenol and β-zearalenolon RAW264.7 macrophages. Toxicol in Vitro 27:1007–1017

    Article  CAS  Google Scholar 

  • Maaroufi K, Chekir L, Creppy EE, Ellouz F, Bacha H (1996) Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon 34:535–540

    Article  CAS  Google Scholar 

  • Malekinejad H, Colenbrander B, Fink-Gremmels J (2006a) Hydroxysteroid dehydrogenases in bovine and porcine granulosa cells convert zearalenone into its hydroxylated metabolites a-zearalenol and b-zearalenol. Vet Res Commun 30:445–453

  • Malekinejad H, Maas-Bakker R, Fink-Gremmels J (2006b) Species differences in the hepatic biotransformation of zearalenone. Vet J 172:96–102

  • Metzler M, Pfeiffer E, Hildebrand AA (2010) Zearalenone and its metabolites as endocrine disrupting chemicals. World Mycotox J 3:385–401

    Article  CAS  Google Scholar 

  • Mousavi SH, Tayarani NZ, Parsaee H (2010) Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol 30(2):185–191

    Article  CAS  Google Scholar 

  • Murata H, Sultana P, Shimada N, Yashioka M (2003) Structure activity relationships among zearalenone and its derivatives based on bovine neutrophil chemiluminescence. Vet Hum Toxicol 1:18–20

    Google Scholar 

  • Obremski K, Zielonka L, Zaluska G, Zwierzchowski W, Pirus K, Gajecki M. 1999. The influence of low doses of zearalenone on liver enzyme activities in gilts. In: Proceedings of the X conference “Microscopy Fungi – plant pathogens and their metabolites”, 66.

  • Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H (2004a) Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of a-tocopherol. Neurosci Lett 362(1):61–64

  • Ochiai T, Soeda S, Ohno S, Tanaka H, Shoyama Y, Shimeno H (2004b) Crocin prevents the death of PC-12 cells through sphingomyelinase-ceramide signaling by increasing glutathione synthesis. Neurochem Int 44(5):321–330

  • Ochiai T, Shimeno H, Ki Mishima Iwasaki K, Fujiwara M, Tanaka H, Shoyama Y, Toda A, Eyanagi R, Soeda S (2007) Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta 1770(4):578–584

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Olsen M, Pettersson H, Kiessling KH (1981) Reduction of zearalenone to zearalenol in female rat liver by 3 alpha-hydroxysteroid dehydrogenase. Acta Pharmacol Toxicol 48:157–161

    Article  CAS  Google Scholar 

  • Ouanes Z, Abid S, Ayed I, Anane R, Mobio T, Creppy EE, Bacha H (2003) Induction of micronuclei by zearalenone in Vero monkey kidney cells and in bone marrow cells of mice: protective effect of vitamin E. Mut Res/Genetic Toxicology and Environmental Mutagenesis 538:63–70

    Article  CAS  Google Scholar 

  • Ouanes Z, Ayed-Boussema I, Baati T, Creppy EE, Bacha H (2005) Zearalenone induces chromosome aberrations in mouse bone marrow: preventive effect of 17betaestradiol, progesterone and vitamin E. Mutat Res 565:139–49

    Article  CAS  Google Scholar 

  • Ouanes-Ben Othmen Z, El Golli E, Abid-Essefi S, Bacha H (2008) Cytotoxicity effects induced by Zearalenone metabolites, α Zearalenol and β Zearalenol, on cultured Vero cells. Toxicology 252:72–77

    Article  Google Scholar 

  • Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335–345

    Article  CAS  Google Scholar 

  • Razavi BM, Hosseinzadeh H, Movassaghi AR, Imenshahidi M, Abnous K (2013) Protective effect of Crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem Biol Interact 203:547–555

    Article  CAS  Google Scholar 

  • Rios JL, Recio MC, Giner RM, Manez S (1996) An update review of saffron and its active constituents. Phytother Res 10(3):189–193

    Article  CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  Google Scholar 

  • Santos LXC, Tanaka Y, Wosniak JJ, Laurindo FRM (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  Google Scholar 

  • Sharaf el dein O, Gallerne C, Deniaud A, Brenner C, Lemaire C (2009) Role of the permeability transition pore complex in lethal inter-organelle crosstalk. Front Biosci 14:3465–3482

    Article  Google Scholar 

  • Su CM, Wang SW, Lee TH, Tzeng WP, Hsiao CJ, Liu SC, Tang CH (2013) Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells. Toxicol Appl Pharmacol 272:335–344

    Article  CAS  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    Article  CAS  Google Scholar 

  • Vaca CE, Wilhelm J, Harms-Ringdahl M (1988) Interaction of lipid peroxidation product with DNA. Mutat Res 195:137–149

    Article  CAS  Google Scholar 

  • Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ, Boorstein R, Kreibich G, Hendershot LM, Ron D (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol 16:4273–4280

    Article  CAS  Google Scholar 

  • Wang Y, Zheng W, Bian X, Yuan Y, Gu J, Liu X, Liu Z, Bian J (2014) Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells. Toxicol Lett 2:182–191

    Article  Google Scholar 

  • Yang H, Park SH, Choi HJ, Do KH, Kim J, An TJ, Lee SH, Moon Y (2010) Mechanism-based alternative monitoring of endoplasmic reticulum stress by 8-keto-trichothecene mycotoxins using human intestinal epithelial cell line. Toxicol Lett 198:317–323

    Article  CAS  Google Scholar 

  • Zinedine A, Soriano JM, Moltó JC, Mañes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    Article  CAS  Google Scholar 

  • Zorgui L, Ayed-Boussema I, Ayed Y, Bacha H, Hassen W (2009) The antigenotoxic activities of cactus (Opuntia ficus-indica) cladodes against the mycotoxin zearalenone in Balb/c mice: prevention of micronuclei, chromosome aberrations and DNA fragmentation. Food Chem Toxicol 47:662–667

    Article  CAS  Google Scholar 

  • Zourgui L, El Golli E, Bouaziz C, Bacha H, Hassen W (2008) Cactus (Opuntia ficus-indica) cladodes prevent oxidative damage induced by the mycotoxin zearalenone in Balb/C mice. Food Chem Toxicol 46:1817–1824

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by “Le Ministère Tunisien de l’Enseignement Supérieur, de la Recherche Scientifique et de la Technologie” and by grants from LabEx LERMIT. A. Prola received a fellowship from GRRC. A. Guilbert received a fellowship from Region “Ile de France CORDDIM”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa Abid-Essefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Philippe Garrigues

Highlights

α-Zearalenone and β-Zearalenol trigger ER stress in HEK293 cells

α-Zearalenone and β-Zearalenol induce apoptosis via activation of the mitochondrial pathway

CRO protect cells against α/β-Zearalenol-induced ER stress and apoptosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salem, I., Boussabbeh, M., Prola, A. et al. Crocin protects human embryonic kidney cells (HEK293) from α- and β-Zearalenol-induced ER stress and apoptosis. Environ Sci Pollut Res 23, 15504–15514 (2016). https://doi.org/10.1007/s11356-016-6741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6741-y

Keywords

Navigation