Skip to main content

Advertisement

Log in

Targeting cancer via ribosome biogenesis: the cachexia perspective

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cancer cachexia afflicts many advanced cancer patients with many progressing to death. While there have been many advancements in understanding the molecular mechanisms that contribute to the development of cancer cachexia, substantial gaps still exist. Chemotherapy drugs often target ribosome biogenesis to slow or blunt tumor cell growth and proliferation. Some of the most frequent side-effects of chemotherapy are loss of skeletal muscle mass, muscular strength and an increase in fatigue. Given that ribosome biogenesis has emerged as a main mechanism regulating muscle hypertrophy, and more recently, also implicated in muscle atrophy, we propose that some chemotherapy drugs can cause further muscle wasting via its effect on skeletal muscle cells. Many chemotherapy drugs, including the most prescribed drugs such as doxorubicin and cisplatin, affect ribosomal DNA transcription, or other pathways related to ribosome biogenesis. Furthermore, middle-aged and older individuals are the most affected population with cancer, and advanced cancer patients often show reduced levels of physical inactivity. Thus, aging and inactivity can themselves affect muscle ribosome biogenesis, which can further worsen the effect of chemotherapy on skeletal muscle ribosome biogenesis and, ultimately, muscle mass and function. We propose that chemotherapy can accelerate the onset or worsen cancer cachexia via its inhibitory effects on skeletal muscle ribosome biogenesis. We end our review by providing recommendations that could be used to ameliorate the negative effects of chemotherapy on skeletal muscle ribosome biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  PubMed  Google Scholar 

  3. Plaza JA, Perez-Montiel D, Mayerson J, Morrison C, Suster S (2008) Metastases to soft tissue: a review of 118 cases over a 30-year period. Cancer 112(1):193–203

    Article  PubMed  Google Scholar 

  4. Dodson S, Baracos VE, Jatoi A, Evans WJ, Cella D, Dalton JT et al (2011) Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies. Annu Rev Med 62:265–279

    Article  CAS  PubMed  Google Scholar 

  5. Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr 29(2):154–159

    Article  CAS  PubMed  Google Scholar 

  6. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495

    Article  PubMed  Google Scholar 

  7. Blauwhoff-Buskermolen S, de van der Schueren MA, Verheul HM, Langius JA (2014) “Pre-cachexia”: a non-existing phenomenon in cancer? Ann Oncol 25(8):1668–1669

    Article  CAS  PubMed  Google Scholar 

  8. Blum D, Stene GB, Solheim TS, Fayers P, Hjermstad MJ, Baracos VE et al (2014) Validation of the consensus-definition for cancer cachexia and evaluation of a classification model—a study based on data from an international multicentre project (EPCRC-CSA). Ann Oncol 25(8):1635–1642

    Article  CAS  PubMed  Google Scholar 

  9. Pin F, Barreto R, Couch ME, Bonetto A, O’Connell TM (2019) Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. J Cachexia Sarcopenia Muscle 10(1):140–154

    Article  PubMed  PubMed Central  Google Scholar 

  10. Damrauer JS, Stadler ME, Acharyya S, Baldwin AS, Couch ME, Guttridge DC (2018) Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia. Eur J Transl Myol 28(2):7590

    Article  PubMed  PubMed Central  Google Scholar 

  11. Naito T, Okayama T, Aoyama T, Ohashi T, Masuda Y, Kimura M et al (2017) Skeletal muscle depletion during chemotherapy has a large impact on physical function in elderly Japanese patients with advanced non-small-cell lung cancer. BMC Cancer 17(1):571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Daly LE, Ni Bhuachalla EB, Power DG, Cushen SJ, James K, Ryan AM (2018) Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancer. J Cachexia Sarcopenia Muscle 9(2):315–325

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thomas G (2000) An encore for ribosome biogenesis in the control of cell proliferation. Nat Cell Biol 2(5):E71–E72

    Article  CAS  PubMed  Google Scholar 

  14. Derenzini M, Montanaro L, Trere D (2017) Ribosome biogenesis and cancer. Acta Histochem 119(3):190–197

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein M, Kastan MB (2015) The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med 66:129–143

    Article  CAS  PubMed  Google Scholar 

  16. Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12(9):587–598

    Article  CAS  PubMed  Google Scholar 

  17. Figueiredo VC, McCarthy JJ (2019) Regulation of ribosome biogenesis in skeletal muscle hypertrophy. Physiology (Bethesda) 34(1):30–42

    CAS  Google Scholar 

  18. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280(17):4294–4314

    Article  CAS  PubMed  Google Scholar 

  19. von Haehling S, Anker SD (2010) Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle 1(1):1–5

    Article  Google Scholar 

  20. Ruiz JR, Sui X, Lobelo F, Morrow JR, Jackson AW, Sjöström M et al (2008) Association between muscular strength and mortality in men: prospective cohort study. BMJ (Clin. Res Ed) 337:439

    Article  Google Scholar 

  21. Ruiz JR, Sui X, Lobelo F, Lee D-C, Morrow JR, Jackson AW et al (2009) Muscular strength and adiposity as predictors of adulthood cancer mortality in men. Cancer Epidemiol Biomarkers Prev 18(5):1468–1476

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gale CR, Martyn CN, Cooper C, Sayer AA (2007) Grip strength, body composition, and mortality. Int J Epidemiol 36(1):228–235

    Article  PubMed  Google Scholar 

  23. Villaseñor A, Ballard-Barbash R, Baumgartner K, Baumgartner R, Bernstein L, McTiernan A et al (2012) Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL Study. J Cancer Survivorship Res Pract 6(4):398–406

    Article  Google Scholar 

  24. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ et al (2013) Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31(12):1539–1547

    Article  PubMed  Google Scholar 

  25. Blauwhoff-Buskermolen S, Versteeg KS, de van der Schueren MAE, den Braver NR, Berkhof J, Langius JAE et al (2016) Loss of muscle mass during chemotherapy is predictive for poor survival of patients with metastatic colorectal cancer. J Clin Oncol 34(12):1339–1344

    Article  CAS  PubMed  Google Scholar 

  26. Metter EJ, Talbot LA, Schrager M, Conwit R (2002) Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 57(10):B359–B365

    Article  PubMed  Google Scholar 

  27. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB et al (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61(1):72–77

    Article  PubMed  Google Scholar 

  28. Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K et al (2000) Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci 55(3):M168–M173

    Article  CAS  PubMed  Google Scholar 

  29. Prado CMM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K et al (2009) Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 15(8):2920–2926

    Article  CAS  PubMed  Google Scholar 

  30. da Rocha IMG, Marcadenti A, de Medeiros GOC, Bezerra RA, Rego JFM, Gonzalez MC et al (2019) Is cachexia associated with chemotherapy toxicities in gastrointestinal cancer patients? A prospective study. J Cachexia Sarcopenia Muscle 10(2):445–454

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q et al (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142(4):531–543

    Article  CAS  PubMed  Google Scholar 

  32. Wannamethee SG, Shaper AG, Lennon L, Whincup PH (2007) Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr 86(5):1339–1346

    Article  CAS  PubMed  Google Scholar 

  33. Mueller TC, Bachmann J, Prokopchuk O, Friess H, Martignoni ME (2016) Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia—can findings from animal models be translated to humans? BMC Cancer 8(16):75

    Article  CAS  Google Scholar 

  34. Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2(11):862–871

    Article  CAS  PubMed  Google Scholar 

  35. Smith KL, Tisdale MJ (1993) Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. Br J Cancer 67(4):680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samuels SE, Knowles AL, Tilignac T, Debiton E, Madelmont JC, Attaix D (2001) Higher skeletal muscle protein synthesis and lower breakdown after chemotherapy in cachectic mice. Am J Physiol Regul Integr Comp Physiol 281(1):R133–R139

    Article  CAS  PubMed  Google Scholar 

  37. Lundholm K, Bylund AC, Holm J, Scherstén T (1976) Skeletal muscle metabolism in patients with malignant tumor. Eur J Cancer 12(6):465–473

    Article  CAS  PubMed  Google Scholar 

  38. White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, Sato S et al (2011) The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse. PLoS ONE 6(9):e24650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Emery PW, Edwards RH, Rennie MJ, Souhami RL, Halliday D (1984) Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed) 289(6445):584–586

    Article  CAS  Google Scholar 

  40. Lautaoja JH, Lalowski M, Nissinen TA, Hentila J, Shi Y, Ritvos O et al (2019) Muscle and serum metabolomes are dysregulated in colon-26 tumor-bearing mice despite amelioration of cachexia with activin receptor type 2B ligand blockade. Am J Physiol Endocrinol Metab 316(5):E852–E865

    Article  CAS  PubMed  Google Scholar 

  41. Kim HG, Huot JR, Pin F, Guo B, Bonetto A, Nader GA (2021) Reduced rDNA transcription diminishes skeletal muscle ribosomal capacity and protein synthesis in cancer cachexia. FASEB J 35(2):e21335

    Article  CAS  PubMed  Google Scholar 

  42. Preston-Martin S, Pike MC, Ross RK, Jones PA, Henderson BE (1990) Increased cell division as a cause of human cancer. Can Res 50(23):7415–7421

    CAS  Google Scholar 

  43. Giancotti FG (2014) Deregulation of cell signaling in cancer. FEBS Lett 588(16):2558–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348

    Article  CAS  PubMed  Google Scholar 

  45. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  CAS  PubMed  Google Scholar 

  46. van Riggelen J, Yetil A, Felsher DW (2010) MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10(4):301–309

    Article  PubMed  CAS  Google Scholar 

  47. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22

    Article  CAS  PubMed  Google Scholar 

  48. Bader AG, Vogt PK (2004) An essential role for protein synthesis in oncogenic cellular transformation. Oncogene 23(18):3145–3150

    Article  CAS  PubMed  Google Scholar 

  49. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464

    Article  CAS  PubMed  Google Scholar 

  50. Janku F, Yap TA, Meric-Bernstam F (2018) Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 15(5):273–291

    Article  CAS  PubMed  Google Scholar 

  51. Henras AK, Plisson-Chastang C, O’Donohue MF, Chakraborty A, Gleizes PE (2015) An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscipl Rev RNA 6(2):225–242

    Article  CAS  Google Scholar 

  52. Drygin D, Rice WG, Grummt I (2010) The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 50(1):131–156

    Article  CAS  PubMed  Google Scholar 

  53. Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25(48):6384–6391

    Article  CAS  PubMed  Google Scholar 

  54. van Sluis M, McStay B (2014) Ribosome biogenesis: achilles heel of cancer? Genes Cancer 5(5–6):152–153

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3(3):179–192

    Article  CAS  PubMed  Google Scholar 

  56. Rosenwald IB (2004) The role of translation in neoplastic transformation from a pathologist’s point of view. Oncogene 23(18):3230–3247

    Article  CAS  PubMed  Google Scholar 

  57. Montanaro L, Treré D, Derenzini M (2008) Nucleolus, ribosomes, and cancer. Am J Pathol 173(2):301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M et al (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285(16):12416–12425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Freed EF, Bleichert F, Dutca LM, Baserga SJ (2010) When ribosomes go bad: diseases of ribosome biogenesis. Mol BioSyst 6(3):481–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hannan RD, Drygin D, Pearson RB (2013) Targeting RNA polymerase I transcription and the nucleolus for cancer therapy. Expert Opin Ther Targets 17(8):873–878

    Article  CAS  PubMed  Google Scholar 

  61. Hein N, Hannan KM, George AJ, Sanij E, Hannan RD (2013) The nucleolus: an emerging target for cancer therapy. Trends Mol Med 19(11):643–654

    Article  CAS  PubMed  Google Scholar 

  62. Poortinga G, Quinn LM, Hannan RD (2015) Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 34(4):403–412

    Article  CAS  PubMed  Google Scholar 

  63. Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD (2014) Targeting the nucleolus for cancer intervention. Biochem Biophys Acta 1842(6):802–816

    CAS  PubMed  Google Scholar 

  64. Tsai RYL, Pederson T (2014) Connecting the nucleolus to the cell cycle and human disease. FASEB J 28(8):3290–3296

    Article  CAS  PubMed  Google Scholar 

  65. Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS et al (2011) AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci signal 4(188):ra56-ra

    Article  CAS  Google Scholar 

  66. Iadevaia V, Liu R, Proud CG (2014) mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin Cell Dev Biol 36:113–120

    Article  CAS  PubMed  Google Scholar 

  67. Guo QM, Malek RL, Kim S, Chiao C, He M, Ruffy M et al (2000) Identification of c-myc responsive genes using rat cDNA microarray. Can Res 60(21):5922–5928

    CAS  Google Scholar 

  68. Schlosser I, Hölzel M, Mürnseer M, Burtscher H, Weidle UH, Eick D (2003) A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res 31(21):6148–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K et al (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9(7):1956–1967

    Article  CAS  PubMed  Google Scholar 

  70. Ahn DH, Li J, Wei L, Doyle A, Marshall JL, Schaaf LJ et al (2015) Results of an abbreviated phase-II study with the Akt Inhibitor MK-2206 in patients with advanced biliary cancer. Sci Rep 5:12122

    Article  PubMed  PubMed Central  Google Scholar 

  71. Meng LH, Zheng XF (2015) Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol Sin 36(10):1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie J, Wang X, Proud CG. mTOR inhibitors in cancer therapy. F1000Res. 2016;5

  73. Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J et al (2009) Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Can Res 69(19):7653–7661

    Article  CAS  Google Scholar 

  74. O’Brien S, Drygin D, Harrison SJ, Khot A, Cullinane C, Geoff M et al (2013) Inhibition of RNA polymerase I transcription by CX-5461 as a therapeutic strategy for the cancer-specific activation of p53 in highly refractory haematological malignancies. Blood 122(21):3941

    Article  Google Scholar 

  75. Drygin D, Lin A, Bliesath J, Ho CB, O’Brien SE, Proffitt C et al (2011) Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 71(4):1418–1430

    Article  CAS  PubMed  Google Scholar 

  76. Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS, Moore HM et al (2014) A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 25(1):77–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ferreira R, Schneekloth JS Jr, Panov KI, Hannan KM, Hannan RD (2020) Targeting the RNA polymerase I transcription for cancer therapy comes of age. Cells 9(2):266

    Article  CAS  PubMed Central  Google Scholar 

  78. Khot A, Brajanovski N, Cameron DP, Hein N, Maclachlan KH, Sanij E et al (2019) First-in-human RNA polymerase I transcription inhibitor CX-5461 in patients with advanced hematologic cancers: results of a phase I dose-escalation study. Cancer Discov 9(8):1036–1049

    Article  CAS  PubMed  Google Scholar 

  79. von Walden F, Casagrande V, Ostlund Farrants K, Nader G (2012) Mechanical loading induces the expression of a Pol I regulon at the onset of skeletal muscle hypertrophy. AJP Cell Physiol 302(10):C1523–C1530

    Article  CAS  Google Scholar 

  80. Whitelaw PF, Hesketh JE (1992) Expression of c-myc and c-fos in rat skeletal muscle. Evidence for increased levels of c-myc mRNA during hypertrophy. Biochem J 281(Pt 1):143–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lai K-MV, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E et al (2004) Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24(21):9295–9304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019

    Article  CAS  PubMed  Google Scholar 

  83. Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E et al (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23(11):3896–3905

    Article  CAS  PubMed  Google Scholar 

  84. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 169(2):361–371

    Article  CAS  PubMed  Google Scholar 

  85. Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y et al (2010) A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21(18):3258–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL et al (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587(Pt 7):1535–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR (2000) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130(10):2413–2419

    Article  CAS  PubMed  Google Scholar 

  88. Wen Y, Alimov AP, McCarthy JJ (2016) Ribosome biogenesis is necessary for skeletal muscle hypertrophy. Exerc Sport Sci Rev 44(3):110–115

    Article  PubMed  PubMed Central  Google Scholar 

  89. Figueiredo VC (2019) Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise. Am J Physiol Regul Integr Comp Physiol 317(5):R709–R718

    Article  CAS  PubMed  Google Scholar 

  90. Nakada S, Ogasawara R, Kawada S, Maekawa T, Ishii N (2016) Correlation between ribosome biogenesis and the magnitude of hypertrophy in overloaded skeletal muscle. PLoS ONE 11(1):e0147284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Figueiredo VC, Englund DA, Vechetti IJ Jr, Alimov A, Peterson CA, McCarthy JJ (2019) Phosphorylation of eukaryotic initiation factor 4E is dispensable for skeletal muscle hypertrophy. Am J Physiol Cell Physiol 317(6):C1247–C1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Figueiredo VC, Caldow MK, Massie V, Markworth JF, Cameron-Smith D, Blazevich AJ (2015) Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 309(1):E72-83

    Article  CAS  PubMed  Google Scholar 

  93. Stec MJ, Kelly NA, Many GM, Windham ST, Tuggle SC, Bamman MM (2016) Ribosome biogenesis may augment resistance training-induced myofiber hypertrophy and is required for myotube growth in vitro. Am J Physiol Endocrinol Metab 310:E652–E661

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hammarstrom D, Ofsteng S, Koll L, Hanestadhaugen M, Hollan I, Apro W et al (2020) Benefits of higher resistance-training volume are related to ribosome biogenesis. J Physiol 598(3):543–565

    Article  PubMed  CAS  Google Scholar 

  95. Machida M, Takeda K, Yokono H, Ikemune S, Taniguchi Y, Kiyosawa H et al (2012) Reduction of ribosome biogenesis with activation of the mTOR pathway in denervated atrophic muscle. J Cell Physiol 227(4):1569–1576

    Article  CAS  PubMed  Google Scholar 

  96. Connolly M, Paul R, Farre-Garros R, Natanek SA, Bloch S, Lee J et al (2018) miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting. J Cachexia Sarcopenia Muscle 9(2):400–416

    Article  PubMed  Google Scholar 

  97. Figueiredo VC, Markworth JF, Durainayagam BR, Pileggi CA, Roy NC, Barnett MP et al (2016) Impaired ribosome biogenesis and skeletal muscle growth in a murine model of inflammatory bowel disease. Inflamm Bowel Dis 22(2):268–278

    Article  PubMed  Google Scholar 

  98. Von Walden F, Gantelius S, Liu C, Borgstrom H, Bjork L, Gremark O et al (2018) Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis. Muscle Nerve 58(2):277–285

    Article  CAS  Google Scholar 

  99. Fiorotto ML, Davis T, Sosa H, Villegas-Montoya C, Estrada I, Fleischmann R (2014) Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice. J Physiol 592:5269–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Figueiredo VC, D’Souza RF, Van Pelt DW, Lawrence MM, Zeng N, Markworth JF et al (2021) Ribosome biogenesis and degradation regulate translational capacity during muscle disuse and reloading. J Cachexia Sarcopenia Muscle 12(1):130–143

    Article  PubMed  Google Scholar 

  101. Blagosklonny MV, Pardee AB (2001) Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res 61(11):4301–4305

    CAS  PubMed  Google Scholar 

  102. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592

    Article  CAS  PubMed  Google Scholar 

  103. van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH (1999) Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer 79(1):108–113

    Article  PubMed  PubMed Central  Google Scholar 

  104. Anderson LL, Collins GJ, Ojima Y, Sullivan RD (1970) A study of the distribution of methotrexate in human tissues and tumors. Cancer Res 30(5):1344–1348

    CAS  PubMed  Google Scholar 

  105. Jang MK, Park C, Hong S, Li H, Rhee E, Doorenbos AZ (2020) Skeletal muscle mass change during chemotherapy: a systematic review and meta-analysis. Anticancer Res 40(5):2409–2418

    Article  CAS  PubMed  Google Scholar 

  106. Mijwel S, Cardinale DA, Norrbom J, Chapman M, Ivarsson N, Wengstrom Y et al (2018) Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer. FASEB J 32(10):5495–5505

    Article  CAS  PubMed  Google Scholar 

  107. Jacobsen PB, Donovan KA, Small BJ, Jim HS, Munster PN, Andrykowski MA (2007) Fatigue after treatment for early stage breast cancer: a controlled comparison. Cancer 110(8):1851–1859

    Article  PubMed  Google Scholar 

  108. Hydock DS, Lien C-Y, Jensen BT, Schneider CM, Hayward R (2011) Characterization of the effect of in vivo doxorubicin treatment on skeletal muscle function in the rat. Anticancer Res 31(6):2023–2028

    CAS  PubMed  Google Scholar 

  109. Hayward R, Hydock D, Gibson N, Greufe S, Bredahl E, Parry T (2013) Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function. J Physiol Biochem 69(2):177–187

    Article  CAS  PubMed  Google Scholar 

  110. Fabris S, MacLean DA (2015) Skeletal muscle an active compartment in the sequestering and metabolism of doxorubicin chemotherapy. PLoS ONE 10(9):e0139070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. de Lima Junior EA, Yamashita AS, Pimentel GD, De Sousa LG, Santos RV, Goncalves CL et al (2016) Doxorubicin caused severe hyperglycaemia and insulin resistance, mediated by inhibition in AMPk signalling in skeletal muscle. J Cachexia Sarcopenia Muscle 7(5):615–625

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9(5):338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ray S, Panova T, Miller G, Volkov A, Porter AC, Russell J et al (2013) Topoisomerase IIalpha promotes activation of RNA polymerase I transcription by facilitating pre-initiation complex formation. Nat Commun 4:1598

    Article  PubMed  CAS  Google Scholar 

  114. Guigni BA, Fix DK, Bivona JJ 3rd, Palmer BM, Carson JA, Toth MJ (2019) Electrical stimulation prevents doxorubicin-induced atrophy and mitochondrial loss in cultured myotubes. Am J Physiol Cell Physiol 317(6):C1213–C1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bruno PM, Liu Y, Park GY, Murai J, Koch CE, Eisen TJ et al (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23(4):461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guinan EM, Doyle SL, Bennett AE, O’Neill L, Gannon J, Elliott JA et al (2018) Sarcopenia during neoadjuvant therapy for oesophageal cancer: characterising the impact on muscle strength and physical performance. Support Care Cancer 26(5):1569–1576

    PubMed  Google Scholar 

  117. Donati G, Bertoni S, Brighenti E, Vici M, Treré D, Volarevic S et al (2011) The balance between rRNA and ribosomal protein synthesis up- and downregulates the tumour suppressor p53 in mammalian cells. Oncogene 30(29):3274–3288

    Article  CAS  PubMed  Google Scholar 

  118. Valdez BC, Wang G, Murray D, Nieto Y, Li Y, Shah J et al (2013) Mechanistic studies on the synergistic cytotoxicity of the nucleoside analogs gemcitabine and clofarabine in multiple myeloma: relevance of p53 and its clinical implications. Exp Hematol 41(8):719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wiedenmann B, Malfertheiner P, Friess H, Ritch P, Arseneau J, Mantovani G et al (2008) A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J Support Oncol 6(1):18–25

    CAS  PubMed  Google Scholar 

  120. Jiang HY, Hickey RJ, Abdel-Aziz W, Malkas LH (2000) Effects of gemcitabine and araC on in vitro DNA synthesis mediated by the human breast cell DNA synthesome. Cancer Chemother Pharmacol 45(4):320–328

    Article  CAS  PubMed  Google Scholar 

  121. RuizvanHaperen VW, Veerman G, Vermorken JB, Peters GJ (1993) 2’,2’-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines. Biochem Pharmacol 46(4):762–766

    Article  CAS  Google Scholar 

  122. Prado CM, Bekaii-Saab T, Doyle LA, Shrestha S, Ghosh S, Baracos VE et al (2012) Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Br J Cancer 106(10):1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Quan-Jun Y, Yan H, Yong-Long H, Li-Li W, Jie L, Jin-Lu H et al (2017) Selumetinib attenuates skeletal muscle wasting in murine cachexia model through ERK inhibition and AKT activation. Mol Cancer Ther 16(2):334–343

    Article  PubMed  CAS  Google Scholar 

  124. Prado CM, Purcell SA, Laviano A (2020) Nutrition interventions to treat low muscle mass in cancer. J Cachexia Sarcopenia Muscle 11(2):366–380

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mitchell CJ, Milan AM, Mitchell SM, Zeng N, Ramzan F, Sharma P et al (2017) The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: a 10-wk randomized controlled trial. Am J Clin Nutr 106(6):1375–1383

    Article  CAS  PubMed  Google Scholar 

  126. McKendry J, Thomas ACQ, Phillips SM (2020) Muscle mass loss in the older critically ill population: potential therapeutic strategies. Nutr Clin Pract 35(4):607–616

    Article  PubMed  Google Scholar 

  127. Figueiredo VC, Zeng N, D’Souza RF, Markworth JF, Della Gatta PA, Petersen A et al (2018) High dose of whey protein after resistance exercise promotes 45 S preribosomal RNA synthesis in older men. Nutrition 50:105–107

    Article  CAS  PubMed  Google Scholar 

  128. Mobley CB, Fox CD, Thompson RM, Healy JC, Santucci V, Kephart WC et al (2015) Comparative effects of whey protein versus L-leucine on skeletal muscle protein synthesis and markers of ribosome biogenesis following resistance exercise. Amino Acids 48(3):733–750

    Article  PubMed  CAS  Google Scholar 

  129. von Walden F, Liu C, Aurigemma N, Nader GA (2016) mTOR signaling regulates myotube hypertrophy by modulating protein synthesis, rDNA transcription and chromatin remodeling. Am J Physiol Cell Physiol 311(4):C663–C672

    Article  Google Scholar 

  130. Haddach M, Schwaebe MK, Michaux J, Nagasawa J, O’Brien SE, Whitten JP et al (2012) Discovery of CX-5461, the first direct and selective inhibitor of RNA polymerase I, for cancer therapeutics. ACS Med Chem Lett 3(7):602–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C et al (2012) Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22(1):51–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Negi SS, Brown P (2015) rRNA synthesis inhibitor, CX-5461, activates ATM/ATR pathway in acute lymphoblastic leukemia, arrests cells in G2 phase and induces apoptosis. Oncotarget 6(20):18094–18104

    Article  PubMed  PubMed Central  Google Scholar 

  133. Negi SS, Brown P (2015) Transient rRNA synthesis inhibition with CX-5461 is sufficient to elicit growth arrest and cell death in acute lymphoblastic leukemia cells. Oncotarget 6(33):34846–34858

    Article  PubMed  PubMed Central  Google Scholar 

  134. Li T, Wei S, Shi Y, Pang S, Qin Q, Yin J et al (2016) The dose-response effect of physical activity on cancer mortality: findings from 71 prospective cohort studies. Br J Sports Med 50(6):339–345

    Article  PubMed  Google Scholar 

  135. Lahart IM, Metsios GS, Nevill AM, Carmichael AR (2015) Physical activity, risk of death and recurrence in breast cancer survivors: a systematic review and meta-analysis of epidemiological studies. Acta Oncol (Stockholm, Sweden) 54(5):635–654

    Article  Google Scholar 

  136. Campbell PT, Patel AV, Newton CC, Jacobs EJ, Gapstur SM (2013) Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol 31(7):876–885

    Article  PubMed  Google Scholar 

  137. Morikawa A, Naito T, Sugiyama M, Okayama T, Aoyama T, Tanuma A et al (2018) Impact of cancer cachexia on hospitalization-associated physical inactivity in elderly patients with advanced non-small-cell lung cancer. Asia Pac J Oncol Nurs 5(4):377–382

    Article  PubMed  PubMed Central  Google Scholar 

  138. Huneidi SA, Wright NC, Atkinson A, Bhatia S, Singh P (2018) Factors associated with physical inactivity in adult breast cancer survivors—a population-based study. Cancer Med 7(12):6331–6339

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kilroe SP, Fulford J, Holwerda AM, Jackman SR, Lee BP, Gijsen AP et al (2020) Short-term muscle disuse induces a rapid and sustained decline in daily myofibrillar protein synthesis rates. Am J Physiol Endocrinol Metab 318(2):E117–E130

    Article  CAS  PubMed  Google Scholar 

  140. Tyganov SA, Mochalova EP, Belova SP, Sharlo KA, Rozhkov SV, Vilchinskaya NA et al (2019) Effects of plantar mechanical stimulation on anabolic and catabolic signaling in rat postural muscle under short-term simulated gravitational unloading. Front Physiol 10:1252

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bruggeman AR, Kamal AH, LeBlanc TW, Ma JD, Baracos VE, Roeland EJ (2016) Cancer cachexia: beyond weight loss. J Oncol Pract 12(11):1163–1171

    Article  PubMed  Google Scholar 

  142. Smith BD, Smith GL, Hurria A, Hortobagyi GN, Buchholz TA (2009) Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol 27(17):2758–2765

    Article  PubMed  Google Scholar 

  143. White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ (2014) Age and cancer risk: a potentially modifiable relationship. Am J Prev Med 46(3 Suppl 1):S7–S15

    Article  PubMed  PubMed Central  Google Scholar 

  144. Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91(4):1123S-S1127

    Article  CAS  PubMed  Google Scholar 

  145. Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R (2017) Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J Diab Metab Disord 16:21

    Article  Google Scholar 

  146. Yarasheski KE, Zachwieja JJ, Bier DM (1993) Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol 265(2 Pt 1):E210–E214

    CAS  PubMed  Google Scholar 

  147. Welle S, Thornton C, Statt M (1995) Myofibrillar protein synthesis in young and old human subjects after three months of resistance training. Am J Physiol 268(3 Pt 1):E422–E427

    CAS  PubMed  Google Scholar 

  148. Volpi E, Mittendorfer B, Wolf SE, Wolfe RR (1999) Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. Am J Physiol 277(3):E513–E520

    CAS  PubMed  Google Scholar 

  149. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A et al (2004) Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab 286(3):E321–E328

    Article  CAS  PubMed  Google Scholar 

  150. Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR (2001) Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA 286(10):1206–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shad BJ, Thompson JL, Breen L (2016) Does the muscle protein synthetic response to exercise and amino acid-based nutrition diminish with advancing age? A systematic review. Am J Physiol Endocrinol Metab 311(5):E803–E817

    Article  PubMed  Google Scholar 

  152. Campbell WW, Trappe TA, Wolfe RR, Evans WJ (2001) The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J Gerontol A Biol Sci Med Sci 56(6):M373–M380

    Article  CAS  PubMed  Google Scholar 

  153. English KL, Paddon-Jones D (2010) Protecting muscle mass and function in older adults during bed rest. Curr Opin Clin Nutr Metab Care 13(1):34–39

    Article  PubMed  PubMed Central  Google Scholar 

  154. Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Phillips BE, Szewczyk NJ et al (2016) Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. J Physiol 594(24):7399–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kirby TJ, Lee JD, England JH, Chaillou T, Esser KA, McCarthy JJ (2015) Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. J Appl Physiol 1985 119(4):321–327

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Stec MJ, Mayhew DL, Bamman MM (2015) The effects of age and resistance loading on skeletal muscle ribosome biogenesis. J Appl Physiol 1985 119(8):851–857

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Adamsen L, Quist M, Midtgaard J, Andersen C, Møller T, Knutsen L et al (2006) The effect of a multidimensional exercise intervention on physical capacity, well-being and quality of life in cancer patients undergoing chemotherapy. Support Care Cancer 14(2):116–127

    Article  PubMed  Google Scholar 

  158. Keogh JWL, MacLeod RD (2012) Body composition, physical fitness, functional performance, quality of life, and fatigue benefits of exercise for prostate cancer patients: a systematic review. J Pain Symptom Manage 43(1):96–110

    Article  PubMed  Google Scholar 

  159. Mustian KM, Peppone L, Darling TV, Palesh O, Heckler CE, Morrow GR (2009) A 4-week home-based aerobic and resistance exercise program during radiation therapy: a pilot randomized clinical trial. J Support Oncol 7(5):158–167

    PubMed  PubMed Central  Google Scholar 

  160. Segal RJ, Reid RD, Courneya KS, Malone SC, Parliament MB, Scott CG et al (2003) Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J Clin Oncol 21(9):1653–1659

    Article  PubMed  Google Scholar 

  161. Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA (2005) Physical activity and survival after breast cancer diagnosis. JAMA 293(20):2479–2486

    Article  CAS  PubMed  Google Scholar 

  162. Meyerhardt JA, Giovannucci EL, Holmes MD, Chan AT, Chan JA, Colditz GA et al (2006) Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 24(22):3527–3534

    Article  PubMed  Google Scholar 

  163. Nader GA, von Walden F, Liu C, Lindvall J, Gutmann L, Pistilli EE et al (2014) Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol (Bethesda, MD, 1985) 116(6):693–702

    Article  CAS  Google Scholar 

  164. Figueiredo VC, Roberts LA, Markworth JF, Barnett MPG, Coombes JS, Raastad T et al (2016) Impact of resistance exercise on ribosome biogenesis is acutely regulated by post-exercise recovery strategies. Physiol Rep 4(2):e12670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Galvão DA, Nosaka K, Taaffe DR, Spry N, Kristjanson LJ, McGuigan MR et al (2006) Resistance training and reduction of treatment side effects in prostate cancer patients. Med Sci Sports Exerc 38(12):2045–2052

    Article  PubMed  Google Scholar 

  166. Courneya KS, Segal RJ, Mackey JR, Gelmon K, Reid RD, Friedenreich CM et al (2007) Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol 25(28):4396–4404

    Article  PubMed  Google Scholar 

  167. Schmitz KH, Ahmed RL, Hannan PJ, Yee D (2005) Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomarkers Prev 14(7):1672–1680

    Article  CAS  PubMed  Google Scholar 

  168. Hanson ED, Wagoner CW, Anderson T, Battaglini CL (2016) The independent effects of strength training in cancer survivors: a systematic review. Curr Oncol Rep 18(5):31

    Article  PubMed  Google Scholar 

  169. Adamsen L, Quist M, Andersen C, Møller T, Herrstedt J, Kronborg D et al (2009) Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: randomised controlled trial. BMJ (Clin Res Ed) 339:b3410

    Article  Google Scholar 

  170. Quist M, Rorth M, Zacho M, Andersen C, Moeller T, Midtgaard J et al (2006) High-intensity resistance and cardiovascular training improve physical capacity in cancer patients undergoing chemotherapy. Scand J Med Sci Sports 16(5):349–357

    Article  CAS  PubMed  Google Scholar 

  171. Brown JC, Schmitz KH (2015) Weight lifting and appendicular skeletal muscle mass among breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat 151(2):385–392

    Article  PubMed  PubMed Central  Google Scholar 

  172. Galvão DA, Taaffe DR, Spry N, Joseph D, Newton RU (2010) Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol 28(2):340–347

    Article  PubMed  CAS  Google Scholar 

  173. Nilsen TS, Raastad T, Skovlund E, Courneya KS, Langberg CW, Lilleby W et al (2015) Effects of strength training on body composition, physical functioning, and quality of life in prostate cancer patients during androgen deprivation therapy. Acta Oncol (Stockholm, Sweden) 54(10):1805–1813

    Article  CAS  Google Scholar 

  174. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM et al (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426

    Article  PubMed  Google Scholar 

  175. Brown JC, Schmitz KH (2014) The prescription or proscription of exercise in colorectal cancer care. Med Sci Sports Exerc 46(12):2202–2209

    Article  PubMed  PubMed Central  Google Scholar 

  176. Jones LW, Eves ND, Peppercorn J (2010) Pre-exercise screening and prescription guidelines for cancer patients. Lancet Oncol 11(10):914–916

    Article  PubMed  PubMed Central  Google Scholar 

  177. Jones LW (2011) Evidence-based risk assessment and recommendations for physical activity clearance: cancer. Appl Physiol Nutri Metabol 36(Suppl 1):S101–S112

    Article  Google Scholar 

  178. Panje CM, Glatzer M, Siren C, Plasswilm L, Putora PM (2018) Treatment options in oncology. JCO Clin Cancer Inform 2:1–10

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have no funding to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandré Casagrande Figueiredo.

Ethics declarations

Conflicts of interest

The authors have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, V.C., McCarthy, J.J. Targeting cancer via ribosome biogenesis: the cachexia perspective. Cell. Mol. Life Sci. 78, 5775–5787 (2021). https://doi.org/10.1007/s00018-021-03888-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03888-6

Keywords

Navigation