Skip to main content

Advertisement

Log in

Cell signaling regulation in salivary gland development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The mammalian salivary gland develops as a highly branched structure designed to produce and secrete saliva. This review focuses on research conducted on mammalian salivary gland development, particularly on the differentiation of acinar, ductal, and myoepithelial cells. We discuss recent studies that provide conceptual advances in the understanding of the molecular mechanisms of salivary gland development. In addition, we describe the organogenesis of submandibular glands (SMGs), model systems used for the study of SMG development, and the key signaling pathways as well as cellular processes involved in salivary gland development. The findings from the recent studies elucidating the identity of stem/progenitor cells in the SMGs, and the process by which they are directed along a series of cell fate decisions to form functional glands, are also discussed. Advances in genetic tools and tissue engineering strategies will significantly increase our knowledge about the mechanisms by which signaling pathways and cells establish tissue architecture and function during salivary gland development, which may also be conserved in the growth and development of other organ systems. An increased knowledge of organ development mechanisms will have profound implications in the design of therapies for the regrowth or repair of injured tissues. In addition, understanding how the processes of cell survival, expansion, specification, movement, and communication with neighboring cells are regulated under physiological and pathological conditions is critical to the development of future treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SOX9:

Sex-determining region Y-box 9

KIT:

KIT proto-oncogene, receptor tyrosine kinase

FGF:

Fibroblast growth factor

TGF-β:

Transforming growth factor-β

SMGs:

Submandibular glands

SLGs:

Sublingual glands

PGs:

Parotid glands

KRT19+ :

Keratin 19 positive

MYC:

Myelocytomatosis oncogene

KIT:

KIT proto-oncogene, receptor tyrosine kinase

AKT:

AKT serine/threonine kinase

PI3K:

Phosphatidylinositol 3-kinase

EDA/EDAR:

Ectodysplasin-A/ectodysplasin-A receptor

MAPK:

Mitogen-activated kinase-like protein

HS:

Heparan sulfate

ECM:

Extracellular matrix

SHH:

Sonic hedgehog

NRG:

Neuregulin

HH:

Hedgehog

SMO:

Smoothened

PTCH:

Patched

BMP:

Bone morphogenetic proteins

GDNF:

Glial cell line-derived neurotrophic growth factor

NRTN:

Neurturin

Ach:

Acetylcholine

VIP:

Vasoactive intestinal peptide

Ascl3:

Achaete-scute homolog 3

SCF:

Stem cell factor

AQP:

Aquaporin

ID:

Intercalated duct

SD:

Striated duct

ED:

Excretory duct

NRF2:

NF-E2-related factor 2

References

  1. Rothova M, Thompson H, Lickert H, Tucker AS (2012) Lineage tracing of the endoderm during oral development. Dev Dyn 241:1183–1191

    Article  PubMed  Google Scholar 

  2. Guizetti B, Radlanski RJ (1996) Development of the parotid gland and its closer neighboring structures in human embryos and fetuses of 19–67 mm CRL. Ann Anat 178:503–508

    Article  CAS  PubMed  Google Scholar 

  3. Quiros-Terron L, Arraez-Aybar LA, Murillo-Gonzalez J, De-la-Cuadra-Blanco C, Martinez-Alvarez MC et al (2019) Initial stages of development of the submandibular gland (human embryos at 5.5-8 weeks of development). J Anat 234:700–708

    Article  PubMed  Google Scholar 

  4. Merida-Velasco JA, Sanchez-Montesinos I, Espin-Ferra J, Garcia-Garcia JD, Garcia-Gomez S et al (1993) Development of the human submandibular salivary gland. J Dent Res 72:1227–1232

    Article  CAS  PubMed  Google Scholar 

  5. Guizetti B, Radlanski RJ (1996) Development of the submandibular gland and its closer neighboring structures in human embryos and fetuses of 19–67 mm CRL. Ann Anat 178:509–514

    Article  CAS  PubMed  Google Scholar 

  6. Lourenço SV, Kapas S (2005) Integrin expression in developing human salivary glands. Histochem Cell Biol 124:391–399

    Article  PubMed  Google Scholar 

  7. Patel VN, Rebustini IT, Hoffman MP (2006) Salivary gland branching morphogenesis. Differentiation 74:349–364

    Article  CAS  PubMed  Google Scholar 

  8. Borghese E (1950) The development in vitro of the submandibular and sublingual glands of Mus musculus. J Anat 84:287–302

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Knox SM, Lombaert IM, Reed X, Vitale-Cross L, Gutkind JS et al (2010) Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science 329:1645–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nedvetsky PI, Emmerson E, Finley JK, Ettinger A, Cruz-Pacheco N et al (2014) Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell 30:449–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK et al (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111:29–40

    Article  CAS  PubMed  Google Scholar 

  12. Teshima TH, Wells KL, Lourenco SV, Tucker AS (2016) Apoptosis in early salivary gland duct morphogenesis and lumen formation. J Dent Res 95:277–283

    Article  CAS  PubMed  Google Scholar 

  13. Tucker AS (2007) Salivary gland development. Semin Cell Dev Biol 18:237–244

    Article  CAS  PubMed  Google Scholar 

  14. Aure MH, Symonds JM, Mays JW, Hoffman MP (2019) Epithelial cell lineage and signaling in murine salivary glands. J Dent Res 98:1186–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emmerson E, Knox SM (2018) Salivary gland stem cells: a review of development, regeneration and cancer. Genesis 56:e23211

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kwak M, Alston N, Ghazizadeh S (2016) Identification of stem cells in the secretory complex of salivary glands. J Dent Res 95:776–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lennartsson J, Ronnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92:1619–1649

    Article  CAS  PubMed  Google Scholar 

  18. Ronnstrand L (2004) Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci 61:2535–2548

    Article  CAS  PubMed  Google Scholar 

  19. Lombaert IM, Abrams SR, Li L, Eswarakumar VP, Sethi AJ et al (2013) Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis. Stem Cell Reports 1:604–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA et al (2008) Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS ONE 3:e2063

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pringle S, Maimets M, van der Zwaag M, Stokman MA, van Gosliga D et al (2016) Human salivary gland stem cells functionally restore radiation damaged salivary glands. Stem Cells 34:640–652

    Article  CAS  PubMed  Google Scholar 

  22. Kwak M, Ninche N, Klein S, Saur D, Ghazizadeh S (2018) c-Kit(+) Cells in adult salivary glands do not function as tissue stem cells. Sci Rep 8:14193

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yoshida S, Ohbo K, Takakura A, Takebayashi H, Okada T et al (2001) Sgn1, a basic helix-loop-helix transcription factor delineates the salivary gland duct cell lineage in mice. Dev Biol 240:517–530

    Article  CAS  PubMed  Google Scholar 

  24. Rugel-Stahl A, Elliott ME, Ovitt CE (2012) Ascl3 marks adult progenitor cells of the mouse salivary gland. Stem Cell Res 8:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bullard T, Koek L, Roztocil E, Kingsley PD, Mirels L et al (2008) Ascl3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands. Dev Biol 320:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arany S, Catalan MA, Roztocil E, Ovitt CE (2011) Ascl3 knockout and cell ablation models reveal complexity of salivary gland maintenance and regeneration. Dev Biol 353:186–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R et al (2011) Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou HY, Katsman Y, Dhaliwal NK, Davidson S, Macpherson NN et al (2014) A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev 28:2699–2711

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang ZX, Teh CH, Kueh JL, Lufkin T, Robson P et al (2007) Oct4 and Sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells. J Biol Chem 282:12822–12830

    Article  CAS  PubMed  Google Scholar 

  30. Emmerson E, May AJ, Nathan S, Cruz-Pacheco N, Lizama CO et al (2017) SOX2 regulates acinar cell development in the salivary gland. Elife 6:8

    Article  Google Scholar 

  31. Emmerson E, May AJ, Berthoin L, Cruz-Pacheco N, Nathan S et al (2018) Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement. EMBO Mol Med 3:10–24

    Google Scholar 

  32. Chatzeli L, Gaete M, Tucker AS (2017) Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development 144:2294–2305

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Z (2013) CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mizrak D, Brittan M, Alison M (2008) CD133: molecule of the moment. J Pathol 214:3–9

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka J, Mabuchi Y, Hata K, Yasuhara R, Takamatsu K et al (2019) Sox9 regulates the luminal stem/progenitor cell properties of salivary glands. Exp Cell Res 382:111449

    Article  CAS  PubMed  Google Scholar 

  36. Seaberg RM, van der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26:125–131

    Article  CAS  PubMed  Google Scholar 

  37. Weng PL, Aure MH, Ovitt CE (2019) Concise Review: a critical evaluation of criteria used to define salivary gland stem cells. Stem Cells 37:1144–1150

    Article  PubMed  PubMed Central  Google Scholar 

  38. Okumura K, Nakamura K, Hisatomi Y, Nagano K, Tanaka Y et al (2003) Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology 38:104–113

    Article  PubMed  Google Scholar 

  39. Hisatomi Y, Okumura K, Nakamura K, Matsumoto S, Satoh A et al (2004) Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages. Hepatology 39:667–675

    Article  PubMed  Google Scholar 

  40. Liu J, Duan Y (2012) Saliva: a potential media for disease diagnostics and monitoring. Oral Oncol 48:569–577

    Article  PubMed  Google Scholar 

  41. Wilmarth PA, Riviere MA, Rustvold DL, Lauten JD, Madden TE et al (2004) Two-dimensional liquid chromatography study of the human whole saliva proteome. J Proteome Res 3:1017–1023

    Article  CAS  PubMed  Google Scholar 

  42. Hauser BR, Hoffman MP (2015) Regulatory mechanisms driving salivary gland organogenesis. Curr Top Dev Biol 115:111–130

    Article  PubMed  PubMed Central  Google Scholar 

  43. Amano O, Mizobe K, Bando Y, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop. Acta Histochem Cytochem 45:241–250

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dardick I, Naiberg J, Leung R, Ramjohn S, Christensen H et al (1990) Ultrastructural study of acinar and intercalated duct organization of submandibular and parotid salivary gland. Lab Invest 63:394–404

    CAS  PubMed  Google Scholar 

  45. Tandler B, Nagato T, Toyoshima K, Phillips CJ (1998) Comparative ultrastructure of intercalated ducts in major salivary glands: a review. Anat Rec 252:64–91

    Article  CAS  PubMed  Google Scholar 

  46. Harunaga J, Hsu JC, Yamada KM (2011) Dynamics of salivary gland morphogenesis. J Dent Res 90:1070–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dunn JF, Wilson JD (1975) Developmental study of androgen responsiveness in the submandibular gland of the mouse. Endocrinology 96:1571–1578

    Article  CAS  PubMed  Google Scholar 

  48. Berkman MD, Kronman JH (1970) A histochemical study of the effects of castration and testosterone administration on the major salivary glands of Swiss mice. Acta Anat (Basel) 76:200–219

    Article  CAS  Google Scholar 

  49. Adthapanyawanich K, Kumchantuek T, Nakata H, Yamamoto M, Wakayama T et al (2015) Morphology and gene expression profile of the submandibular gland of androgen-receptor-deficient mice. Arch Oral Biol 60:320–332

    Article  CAS  PubMed  Google Scholar 

  50. Bhoola KD, Dorey G, Jones CW (1973) The influence of androgens on enzymes (chymotrypsin-and trypsin-like proteases, renin, kallikrein and amylase) and on cellular structure of the mouse submaxillary gland. J Physiol 235:503–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Caramia F (1966) Ultrastructure of mouse submaxillary gland. II. Effect of castration in the male. J Ultrastruct Res 16:524–536

    Article  CAS  PubMed  Google Scholar 

  52. Chretien M (1977) Action of testosterone on the differentiation and secretory activity of a target organ: the submaxillary gland of the mouse. Int Rev Cytol 50:333–396

    Article  CAS  PubMed  Google Scholar 

  53. Kaiho M, Nakamura T, Kumegawa M (1975) Morphological studies on the synthesis of secretory granules in convoluted tubules of mouse submandibular gland. Anat Rec 183:405–419

    Article  CAS  PubMed  Google Scholar 

  54. Rogers AW, Brown-Grant K (1971) The effects of castration on the ultrastructure and the iodide-concentrating ability of mouse submaxillary salivary glands. J Anat 109:51–62

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsuura S, Sahara N, Suzuki K (1984) Fine structure of submandibular glands of mice with testicular feminization (Tfm/Y). Cell Tissue Res 235:295–301

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki A, Shim J, Ogata K, Yoshioka H (2019) Cholesterol metabolism plays a crucial role in the regulation of autophagy for cell differentiation of granular convoluted tubules in male mouse submandibular glands. Development 146(20):178335

    Article  Google Scholar 

  57. Iber D, Menshykau D (2013) The control of branching morphogenesis. Open Biol 3:130088

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S et al (2002) Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development 129:5767–5778

    Article  CAS  PubMed  Google Scholar 

  59. May AJ, Chatzeli L, Proctor GB, Tucker AS (2015) Salivary gland dysplasia in Fgf10 heterozygous mice: a new mouse model of xerostomia. Curr Mol Med 15:674–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I et al (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492

    Article  PubMed  Google Scholar 

  61. Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K et al (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649

    Article  CAS  PubMed  Google Scholar 

  62. Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I et al (2001) Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 231:47–62

    Article  CAS  PubMed  Google Scholar 

  63. Jaskoll T, Abichaker G, Witcher D, Sala FG, Bellusci S et al (2005) FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev Biol 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  64. Teshima TH, Lourenco SV, Tucker AS (2016) Multiple cranial organ defects after conditionally knocking out Fgf10 in the neural crest. Front Physiol 7:488

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wells KL, Gaete M, Matalova E, Deutsch D, Rice D et al (2013) Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10. Biol Open 2:981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Makarenkova HP, Hoffman MP, Beenken A, Eliseenkova AV, Meech R et al (2009) Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci Signal 2:ra55

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jaskoll T, Zhou YM, Chai Y, Makarenkova HP, Collinson JM et al (2002) Embryonic submandibular gland morphogenesis: stage-specific protein localization of FGFs, BMPs, Pax6 and Pax9 in normal mice and abnormal SMG phenotypes in FgfR2-IIIc(+/Delta), BMP7(-/-) and Pax6(-/-) mice. Cells Tissues Organs 170:83–98

    Article  CAS  PubMed  Google Scholar 

  68. Chapman DB, Shashi V, Kirse DJ (2009) Case report: aplasia of the lacrimal and major salivary glands (ALSG). Int J Pediatr Otorhinolaryngol 73:899–901

    Article  PubMed  Google Scholar 

  69. Milunsky JM, Zhao G, Maher TA, Colby R, Everman DB (2006) LADD syndrome is caused by FGF10 mutations. Clin Genet 69:349–354

    Article  CAS  PubMed  Google Scholar 

  70. Seymen F, Koruyucu M, Toptanci IR, Balsak S, Dedeoglu S et al (2017) Novel FGF10 mutation in autosomal dominant aplasia of lacrimal and salivary glands. Clin Oral Investig 21:167–172

    Article  PubMed  Google Scholar 

  71. Rodrigo MJ, Idoipe M, Izquierdo S, Satue M, Mateo A et al (2018) New pathogenic variant in the FGF10 gene in the agenesis of lacrimal and salivary gland syndrome: ophthalmological and genetic study. Ophthalmic Genet 39:125–128

    Article  CAS  PubMed  Google Scholar 

  72. Entesarian M, Matsson H, Klar J, Bergendal B, Olson L et al (2005) Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. Nat Genet 37:125–127

    Article  CAS  PubMed  Google Scholar 

  73. Scheckenbach K, Balz V, Wagenmann M, Hoffmann TK (2008) An intronic alteration of the fibroblast growth factor 10 gene causing ALSG-(aplasia of lacrimal and salivary glands) syndrome. BMC Med Genet 9:114

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rohmann E, Brunner HG, Kayserili H, Uyguner O, Nurnberg G et al (2006) Mutations in different components of FGF signaling in LADD syndrome. Nat Genet 38:414–417

    Article  CAS  PubMed  Google Scholar 

  75. Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G et al (2009) miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 333:238–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boucherat O, Nadeau V, Berube-Simard FA, Charron J, Jeannotte L (2015) Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development 142:3801

    Article  CAS  PubMed  Google Scholar 

  77. Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R et al (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186

    Article  CAS  PubMed  Google Scholar 

  78. Patel VN, Likar KM, Zisman-Rozen S, Cowherd SN, Lassiter KS et al (2008) Specific heparan sulfate structures modulate FGF10-mediated submandibular gland epithelial morphogenesis and differentiation. J Biol Chem 283:9308–9317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shams I, Rohmann E, Eswarakumar VP, Lew ED, Yuzawa S et al (2007) Lacrimo-auriculo-dento-digital syndrome is caused by reduced activity of the fibroblast growth factor 10 (FGF10)-FGF receptor 2 signaling pathway. Mol Cell Biol 27:6903–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lew ED, Bae JH, Rohmann E, Wollnik B, Schlessinger J (2007) Structural basis for reduced FGFR2 activity in LADD syndrome: Implications for FGFR autoinhibition and activation. Proc Natl Acad Sci U S A 104:19802–19807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jaskoll T, Witcher D, Toreno L, Bringas P, Moon AM et al (2004) FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Dev Biol 268:457–469

    Article  CAS  PubMed  Google Scholar 

  82. Daphna-Iken D, Shankar DB, Lawshe A, Ornitz DM, Shackleford GM et al (1998) MMTV-Fgf8 transgenic mice develop mammary and salivary gland neoplasia and ovarian stromal hyperplasia. Oncogene 17:2711–2717

    Article  CAS  PubMed  Google Scholar 

  83. Matsumoto S, Kurimoto T, Taketo MM, Fujii S, Kikuchi A (2016) The WNT/MYB pathway suppresses KIT expression to control the timing of salivary proacinar differentiation and duct formation. Development 143:2311–2324

    CAS  PubMed  Google Scholar 

  84. Guo L, Yu QC, Fuchs E (1993) Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J 12:973–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Guo L, Degenstein L, Fuchs E (1996) Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 10:165–175

    Article  CAS  PubMed  Google Scholar 

  86. Knosp WM, Knox SM, Lombaert IM, Haddox CL, Patel VN et al (2015) Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell 32:667–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hosseini ZF, Nelson DA, Moskwa N, Sfakis LM, Castracane J et al (2018) FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids. J Cell Sci 1:131

    Google Scholar 

  88. Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65:1566–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sisto M, Lorusso L, Ingravallo G, Lisi S (2017) Exocrine gland morphogenesis: insights into the role of amphiregulin from development to disease. Arch Immunol Ther Exp (Warsz) 65:477–499

    Article  CAS  Google Scholar 

  90. Miyazaki Y, Nakanishi Y, Hieda Y (2004) Tissue interaction mediated by neuregulin-1 and ErbB receptors regulates epithelial morphogenesis of mouse embryonic submandibular gland. Dev Dyn 230:591–596

    Article  CAS  PubMed  Google Scholar 

  91. Nitta M, Kume T, Nogawa H (2009) FGF alters epithelial competence for EGF at the initiation of branching morphogenesis of mouse submandibular gland. Dev Dyn 238:315–323

    Article  CAS  PubMed  Google Scholar 

  92. Jaskoll T, Melnick M (1999) Submandibular gland morphogenesis: stage-specific expression of TGF-alpha/EGF, IGF, TGF-beta, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-beta2, TGF-beta3, and EGF-r null mutations. Anat Rec 256:252–268

    Article  CAS  PubMed  Google Scholar 

  93. Nogawa H, Takahashi Y (1991) Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112:855–861

    Article  CAS  PubMed  Google Scholar 

  94. Koyama N, Kashimata M, Sakashita H, Sakagami H, Gresik EW (2003) EGF-stimulated signaling by means of PI3K, PLCgamma1, and PKC isozymes regulates branching morphogenesis of the fetal mouse submandibular gland. Dev Dyn 227:216–226

    Article  CAS  PubMed  Google Scholar 

  95. Koyama N, Hayashi T, Mizukoshi K, Matsumoto T, Gresik EW et al (2012) Extracellular regulated kinase5 is expressed in fetal mouse submandibular glands and is phosphorylated in response to epidermal growth factor and other ligands of the ErbB family of receptors. Dev Growth Differ 54:801–808

    Article  CAS  PubMed  Google Scholar 

  96. Kashimata M, Sayeed S, Ka A, Onetti-Muda A, Sakagami H et al (2000) The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev Biol 220:183–196

    Article  CAS  PubMed  Google Scholar 

  97. Kashimata M, Gresik EW (1997) Epidermal growth factor system is a physiological regulator of development of the mouse fetal submandibular gland and regulates expression of the alpha6-integrin subunit. Dev Dyn 208:149–161

    Article  CAS  PubMed  Google Scholar 

  98. Umeda Y, Miyazaki Y, Shiinoki H, Higashiyama S, Nakanishi Y et al (2001) Involvement of heparin-binding EGF-like growth factor and its processing by metalloproteinases in early epithelial morphogenesis of the submandibular gland. Dev Biol 237:202–211

    Article  CAS  PubMed  Google Scholar 

  99. Haara O, Koivisto T, Miettinen PJ (2009) EGF-receptor regulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells. Differentiation 77:298–306

    Article  CAS  PubMed  Google Scholar 

  100. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  101. Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24:2437–2447

    Article  CAS  PubMed  Google Scholar 

  102. Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131:965–973

    Article  CAS  PubMed  Google Scholar 

  103. Luo Z, Shang X, Zhang H, Wang G, Massey PA et al (2019) Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am J Pathol 189:1495–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lloyd-Lewis B, Mourikis P, Fre S (2019) Notch signalling: sensor and instructor of the microenvironment to coordinate cell fate and organ morphogenesis. Curr Opin Cell Biol 61:16–23

    Article  CAS  PubMed  Google Scholar 

  105. Dang H, Lin AL, Zhang B, Zhang HM, Katz MS et al (2009) Role for Notch signaling in salivary acinar cell growth and differentiation. Dev Dyn 238:724–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Baladron V, Ruiz-Hidalgo MJ, Nueda ML, Diaz-Guerra MJ, Garcia-Ramirez JJ et al (2005) dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res 303:343–359

    Article  CAS  PubMed  Google Scholar 

  107. Yevtodiyenko A, Schmidt JV (2006) Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta. Dev Dyn 235:1115–1123

    Article  CAS  PubMed  Google Scholar 

  108. Garcia-Gallastegi P, Ruiz-Garcia A, Ibarretxe G, Rivero-Hinojosa S, Gonzalez-Siccha AD et al (2019) Similarities and differences in tissue distribution of DLK1 and DLK2 during E16.5 mouse embryogenesis. Histochem Cell Biol 152:47–60

    Article  CAS  PubMed  Google Scholar 

  109. Garcia-Gallastegui P, Ibarretxe G, Garcia-Ramirez JJ, Baladron V, Aurrekoetxea M et al (2014) DLK1 regulates branching morphogenesis and parasympathetic innervation of salivary glands through inhibition of NOTCH signalling. Biol Cell 106:237–253

    Article  CAS  PubMed  Google Scholar 

  110. Garcia-Gallastegui P, Luzuriaga J, Aurrekoetxea M, Baladron V, Ruiz-Hidalgo MJ et al (2016) Reduced salivary gland size and increased presence of epithelial progenitor cells in DLK1-deficient mice. Cell Tissue Res 364:513–525

    Article  CAS  PubMed  Google Scholar 

  111. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  112. Wang J, Sinha T, Wynshaw-Boris A (2012) Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb Perspect Biol 4:3

    Article  Google Scholar 

  113. Steinhart Z, Angers S (2018) Wnt signaling in development and tissue homeostasis. Development 1:145

    Google Scholar 

  114. Sugimura R, Li L (2010) Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res C Embryo Today 90:243–256

    Article  CAS  PubMed  Google Scholar 

  115. Wang HY, Malbon CC (2003) Wnt signaling, Ca2+, and cyclic GMP: visualizing frizzled functions. Science 300:1529–1530

    Article  CAS  PubMed  Google Scholar 

  116. Miller JR (2002) The Wnts. Genome Biol 3:REVIEW3001

    Google Scholar 

  117. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13:767–779

    Article  CAS  PubMed  Google Scholar 

  118. Patel N, Sharpe PT, Miletich I (2011) Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Dev Biol 358:156–167

    Article  CAS  PubMed  Google Scholar 

  119. Haara O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I et al (2011) Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development 138:2681–2691

    Article  CAS  PubMed  Google Scholar 

  120. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J et al (2016) Long-term in vitro expansion of salivary gland stem cells driven by wnt signals. Stem Cell Rep 6:150–162

    Article  CAS  Google Scholar 

  121. Kopinke D, Norris AM, Mukhopadhyay S (2020) Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin Cell Dev Biol 5:3

    Google Scholar 

  122. Mukhopadhyay S, Rohatgi R (2014) G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin Cell Dev Biol 33:63–72

    Article  CAS  PubMed  Google Scholar 

  123. Carballo GB, Honorato JR, de Lopes GPF, Spohr T (2018) A highlight on Sonic hedgehog pathway. Cell Commun Signal 16:11

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sasai N, Toriyama M, Kondo T (2019) Hedgehog signal and genetic disorders. Front Genet 10:1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee RT, Zhao Z, Ingham PW (2016) Hedgehog signalling. Development 143:367–372

    Article  CAS  PubMed  Google Scholar 

  126. Kong JH, Siebold C, Rohatgi R (2019) Biochemical mechanisms of vertebrate hedgehog signaling. Development 1:146

    Google Scholar 

  127. Guan Z, Dong B, Huang C, Hu X, Zhang Y et al (2019) Expression patterns of genes critical for SHH, BMP, and FGF pathways during the lumen formation of human salivary glands. J Mol Histol 50:217–227

    Article  CAS  PubMed  Google Scholar 

  128. Jaskoll T, Leo T, Witcher D, Ormestad M, Astorga J et al (2004) Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn 229:722–732

    Article  CAS  PubMed  Google Scholar 

  129. Mizukoshi K, Koyama N, Hayashi T, Zheng L, Matsuura S et al (2016) Shh/Ptch and EGF/ErbB cooperatively regulate branching morphogenesis of fetal mouse submandibular glands. Dev Biol 412:278–287

    Article  CAS  PubMed  Google Scholar 

  130. Fiaschi M, Kolterud A, Nilsson M, Toftgard R, Rozell B (2011) Targeted expression of GLI1 in the salivary glands results in an altered differentiation program and hyperplasia. Am J Pathol 179:2569–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Elliott KH, Millington G, Brugmann SA (2018) A novel role for cilia-dependent sonic hedgehog signaling during submandibular gland development. Dev Dyn 247:818–831

    Article  PubMed  PubMed Central  Google Scholar 

  132. McDermott KM, Liu BY, Tlsty TD, Pazour GJ (2010) Primary cilia regulate branching morphogenesis during mammary gland development. Curr Biol 20:731–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zinski J, Tajer B, Mullins MC (2018) TGF-beta family signaling in early vertebrate development. Cold Spring Harb Perspect Biol 1:10

    Google Scholar 

  134. Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20:343–355

    Article  CAS  PubMed  Google Scholar 

  135. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J (1994) Mechanism of activation of the TGF-beta receptor. Nature 370:341–347

    Article  CAS  PubMed  Google Scholar 

  136. Katagiri T, Watabe T (2016) Bone morphogenetic proteins. Cold Spring Harb Perspect Biol 1:8

    Google Scholar 

  137. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  138. Heldin CH, Moustakas A (2016) Signaling receptors for TGF-beta family members. Cold Spring Harb Perspect Biol 3:8–21

    Google Scholar 

  139. Takahashi H, Ikeda T (1996) Transcripts for two members of the transforming growth factor-beta superfamily BMP-3 and BMP-7 are expressed in developing rat embryos. Dev Dyn 207:439–449

    Article  CAS  PubMed  Google Scholar 

  140. Heikinheimo KA, Laine MA, Ritvos OV, Voutilainen RJ, Hogan BL et al (1999) Bone morphogenetic protein-6 is a marker of serous acinar cell differentiation in normal and neoplastic human salivary gland. Cancer Res 59:5815–5821

    CAS  PubMed  Google Scholar 

  141. Thomadakis G, Ramoshebi LN, Crooks J, Rueger DC, Ripamonti U (1999) Immunolocalization of bone morphogenetic protein-2 and -3 and osteogenic protein-1 during murine tooth root morphogenesis and in other craniofacial structures. Eur J Oral Sci 107:368–377

    Article  CAS  PubMed  Google Scholar 

  142. Zouvelou V, Luder HU, Mitsiadis TA, Graf D (2009) Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. J Exp Zool B Mol Dev Evol 312B:361–374

    Article  CAS  PubMed  Google Scholar 

  143. Miao N, Zhan Y, Xu Y, Yuan H, Qin C et al (2019) Loss of Fam20c causes defects in the acinar and duct structure of salivary glands in mice. Int J Mol Med 43:2103–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yin H, Cabrera-Perez J, Lai Z, Michael D, Weller M et al (2013) Association of bone morphogenetic protein 6 with exocrine gland dysfunction in patients with Sjogren’s syndrome and in mice. Arthritis Rheum 65:3228–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yin H, Kalra L, Lai Z, Guimaro MC, Aber L et al (2020) Inhibition of bone morphogenetic protein 6 receptors ameliorates Sjogren’s syndrome in mice. Sci Rep 10:2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kizu Y, Sakurai H, Katagiri S, Shinozaki N, Ono M et al (1996) Immunohistological analysis of tumour growth factor beta 1 expression in normal and inflamed salivary glands. J Clin Pathol 49:728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jaskoll T, Choy HA, Melnick M (1994) Glucocorticoids, TGF-beta, and embryonic mouse salivary gland morphogenesis. J Craniofac Genet Dev Biol 14:217–230

    CAS  PubMed  Google Scholar 

  148. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Janebodin K, Buranaphatthana W, Ieronimakis N, Hays AL, Reyes M (2013) An in vitro culture system for long-term expansion of epithelial and mesenchymal salivary gland cells: role of TGF-beta1 in salivary gland epithelial and mesenchymal differentiation. Biomed Res Int 3:815895

    Google Scholar 

  150. Hall BE, Zheng C, Swaim WD, Cho A, Nagineni CN et al (2010) Conditional overexpression of TGF-beta1 disrupts mouse salivary gland development and function. Lab Invest 90:543–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Boivin GP, O’Toole BA, Orsmby IE, Diebold RJ, Eis MJ et al (1995) Onset and progression of pathological lesions in transforming growth factor-beta 1-deficient mice. Am J Pathol 146:276–288

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mikkola ML, Thesleff I (2003) Ectodysplasin signaling in development. Cytokine Growth Factor Rev 14:211–224

    Article  CAS  PubMed  Google Scholar 

  153. Mikkola ML (2009) Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet A 149A:2031–2036

    Article  CAS  PubMed  Google Scholar 

  154. Cui CY, Schlessinger D (2006) EDA signaling and skin appendage development. Cell Cycle 5:2477–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Botchkarev VA, Fessing MY (2005) Edar signaling in the control of hair follicle development. J Investig Dermatol Symp Proc 10:247–251

    Article  CAS  PubMed  Google Scholar 

  156. Nordgarden H, Johannessen S, Storhaug K, Jensen JL (1998) Salivary gland involvement in hypohidrotic ectodermal dysplasia. Oral Dis 4:152–154

    Article  CAS  PubMed  Google Scholar 

  157. Bergendal B (2014) Orodental manifestations in ectodermal dysplasia-a review. Am J Med Genet A 164A:2465–2471

    Article  PubMed  Google Scholar 

  158. Schneider H, Hammersen J, Preisler-Adams S, Huttner K, Rascher W et al (2011) Sweating ability and genotype in individuals with X-linked hypohidrotic ectodermal dysplasia. J Med Genet 48:426–432

    Article  CAS  PubMed  Google Scholar 

  159. Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P et al (2011) Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat 32:70–72

    Article  CAS  PubMed  Google Scholar 

  160. Blecher SR, Debertin M, Murphy JS (1983) Pleiotropic effect of Tabby gene on epidermal growth factor-containing cells of mouse submandibular gland. Anat Rec 207:25–29

    Article  CAS  PubMed  Google Scholar 

  161. Wells KL, Mou C, Headon DJ, Tucker AS (2011) Defects and rescue of the minor salivary glands in Eda pathway mutants. Dev Biol 349:137–146

    Article  CAS  PubMed  Google Scholar 

  162. Jaskoll T, Zhou YM, Trump G, Melnick M (2003) Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development. Anat Rec A Discov Mol Cell Evol Biol 271:322–331

    Article  PubMed  Google Scholar 

  163. Wells KL, Mou C, Headon DJ, Tucker AS (2010) Recombinant EDA or Sonic Hedgehog rescue the branching defect in Ectodysplasin A pathway mutant salivary glands in vitro. Dev Dyn 239:2674–2684

    Article  CAS  PubMed  Google Scholar 

  164. Mukaibo T, Munemasa T, Masaki C, Cui CY, Melvin JE (2018) Defective NaCl reabsorption in salivary glands of Eda-null X-LHED mice. J Dent Res 97:1244–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chang SH, Jobling S, Brennan K, Headon DJ (2009) Enhanced Edar signalling has pleiotropic effects on craniofacial and cutaneous glands. PLoS ONE 4:e7591

    Article  PubMed  PubMed Central  Google Scholar 

  166. Voutilainen M, Lindfors PH, Trela E, Lonnblad D, Shirokova V et al (2015) Ectodysplasin/NF-kappaB promotes mammary cell fate via Wnt/beta-catenin pathway. PLoS Genet 11:e1005676

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lindfors PH, Voutilainen M, Mikkola ML (2013) Ectodysplasin/NF-kappaB signaling in embryonic mammary gland development. J Mammary Gland Biol Neoplasia 18:165–169

    Article  PubMed  Google Scholar 

  168. Lippens S, Lefebvre S, Gilbert B, Sze M, Devos M et al (2011) Keratinocyte-specific ablation of the NF-kappaB regulatory protein A20 (TNFAIP3) reveals a role in the control of epidermal homeostasis. Cell Death Differ 18:1845–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Schmidt-Ullrich R, Tobin DJ, Lenhard D, Schneider P, Paus R et al (2006) NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 133:1045–1057

    Article  CAS  PubMed  Google Scholar 

  170. Okita T, Asano N, Yasuno S, Shimomura Y (2019) Functional studies for a dominant mutation in the EDAR gene responsible for hypohidrotic ectodermal dysplasia. J Dermatol 46:710–715

    Article  CAS  PubMed  Google Scholar 

  171. Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J et al (2007) Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 134:117–125

    Article  CAS  PubMed  Google Scholar 

  172. Häärä O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I et al (2011) Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development 138:2681

    Article  PubMed  Google Scholar 

  173. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  174. Poyhonen S, Er S, Domanskyi A, Airavaara M (2019) Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol 10:486

    Article  PubMed  PubMed Central  Google Scholar 

  175. Paratcha G, Ledda F (2008) GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci 31:384–391

    Article  CAS  PubMed  Google Scholar 

  176. Peng X, Varendi K, Maimets M, Andressoo JO, Coppes RP (2017) Role of glial-cell-derived neurotrophic factor in salivary gland stem cell response to irradiation. Radiother Oncol 124:448–454

    Article  CAS  PubMed  Google Scholar 

  177. Xiao N, Lin Y, Cao H, Sirjani D, Giaccia AJ et al (2014) Neurotrophic factor GDNF promotes survival of salivary stem cells. J Clin Invest 124:3364–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rossi J, Tomac A, Saarma M, Airaksinen MS (2000) Distinct roles for GFRalpha1 and GFRalpha2 signalling in different cranial parasympathetic ganglia in vivo. Eur J Neurosci 12:3944–3952

    Article  CAS  PubMed  Google Scholar 

  179. Enomoto H, Heuckeroth RO, Golden JP, Johnson EM, Milbrandt J (2000) Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development 127:4877–4889

    Article  CAS  PubMed  Google Scholar 

  180. Rossi J, Luukko K, Poteryaev D, Laurikainen A, Sun YF et al (1999) Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron 22:243–252

    Article  CAS  PubMed  Google Scholar 

  181. Knox SM, Lombaert IM, Haddox CL, Abrams SR, Cotrim A et al (2013) Parasympathetic stimulation improves epithelial organ regeneration. Nat Commun 4:1494

    Article  PubMed  PubMed Central  Google Scholar 

  182. Ferreira JNA, Zheng C, Lombaert IMA, Goldsmith CM, Cotrim AP et al (2018) Neurturin gene therapy protects parasympathetic function to prevent irradiation-induced murine salivary gland hypofunction. Mol Ther Methods Clin Dev 9:172–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Juusela P, Tanskanen M, Nieminen A, Kari K, Suominen L et al (2013) Xerostomia in hereditary gelsolin amyloidosis. Amyloid 20:39–44

    Article  CAS  PubMed  Google Scholar 

  184. Juusela P, Tanskanen M, Nieminen A, Uitto VJ, Blafield H et al (2009) Hereditary gelsolin amyloidosis mimicking Sjogren’s syndrome. Clin Rheumatol 28:1351–1354

    Article  PubMed  Google Scholar 

  185. Trainor PA (2010) Craniofacial birth defects: The role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am J Med Genet A 152A:2984–2994

    Article  PubMed  Google Scholar 

  186. Dixon J, Trainor P, Dixon MJ (2007) Treacher collins syndrome. Orthod Craniofac Res 10:88–95

    Article  PubMed  Google Scholar 

  187. Osterhus IN, Skogedal N, Akre H, Johnsen UL, Nordgarden H et al (2012) Salivary gland pathology as a new finding in Treacher Collins syndrome. Am J Med Genet A 158A:1320–1325

    Article  PubMed  Google Scholar 

  188. Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J et al (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97:9579–9584

    Article  CAS  PubMed  Google Scholar 

  189. Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L et al (2004) Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol 66:260–267

    Article  CAS  PubMed  Google Scholar 

  190. Tobin G, Giglio D, Gotrick B (2002) Studies of muscarinic receptor subtypes in salivary gland function in anaesthetized rats. Auton Neurosci 100:1–9

    Article  CAS  PubMed  Google Scholar 

  191. Cho G, Bragiel AM, Wang D, Pieczonka TD, Skowronski MT et al (2015) Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane. Biochim Biophys Acta 1850:784–793

    Article  CAS  PubMed  Google Scholar 

  192. Ishikawa Y, Eguchi T, Skowronski MT, Ishida H (1998) Acetylcholine acts on M3 muscarinic receptors and induces the translocation of aquaporin5 water channel via cytosolic Ca2+ elevation in rat parotid glands. Biochem Biophys Res Commun 245:835–840

    Article  CAS  PubMed  Google Scholar 

  193. Ishikawa Y, Skowronski MT, Ishida H (2000) Persistent increase in the amount of aquaporin-5 in the apical plasma membrane of rat parotid acinar cells induced by a muscarinic agonist SNI-2011. FEBS Lett 477:253–257

    Article  CAS  PubMed  Google Scholar 

  194. Qi W, Cong X, Zhang XM, Wang ZY, Yang NY et al (2017) Parasympathectomy increases resting salivary secretion in normal and irradiated submandibular glands of rats. Eur J Oral Sci 125:110–118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institute of Dental and Craniofacial Research, NIH (DE026509, DE026767, DE028340, and DE029818), and UTHealth School of Dentistry faculty funds to JI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Iwata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Ogata, K. & Iwata, J. Cell signaling regulation in salivary gland development. Cell. Mol. Life Sci. 78, 3299–3315 (2021). https://doi.org/10.1007/s00018-020-03741-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03741-2

Keywords

Navigation