Skip to main content

Advertisement

Log in

Human pituitary development and application of iPSCs for pituitary disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The pituitary plays a pivotal role in maintaining systemic homeostasis by secreting several hormones. During fetal development, the pituitary develops from the oral ectoderm in contact with the adjacent hypothalamus. This process is regulated by the fine-tuned expression of transcription and growth factors. Impairments of this process result in congenital pituitary hypoplasia leading to dysfunction of the pituitary. Although animal models such as knockout mice have helped to clarify these underlying mechanisms, the developmental processes of the human pituitary gland and the mechanisms of human pituitary disorders have not been fully understood. This is because, at least in part, of the lack of a human pituitary developmental model. Recently, methods for in vitro induction of the pituitary gland from human pluripotent stem cells were developed. These models can be utilized not only for regenerative medicine but also for human pituitary studies on developmental biology and for modeling of pituitary disorders, such as hypopituitarism and pituitary tumors. In this review, we provide an overview of recent progress in the applications of pluripotent stem cells for pituitary research and discuss further perspectives for pituitary studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nakaguma M, Correa FA, Santana LS, Benedetti AFF, Perez RV, Huayllas MKP, Miras MB, Funari MFA, Lerario AM, Mendonca BB, Carvalho LRS, Jorge AAL, Arnhold IJP (2019) Genetic diagnosis of congenital hypopituitarism by a target gene panel: novel pathogenic variants in GLI2, OTX2 and GHRHR. Endocr Connect 8(5):590–595. https://doi.org/10.1530/EC-19-0085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  4. Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17(3):170–182. https://doi.org/10.1038/nrm.2015.27

    Article  CAS  PubMed  Google Scholar 

  5. Dincer Z, Piao J, Niu L, Ganat Y, Kriks S, Zimmer B, Shi SH, Tabar V, Studer L (2013) Specification of functional cranial placode derivatives from human pluripotent stem cells. Cell Rep 5(5):1387–1402. https://doi.org/10.1016/j.celrep.2013.10.048

    Article  CAS  PubMed  Google Scholar 

  6. Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, Oiso Y, Tsuji T, Sasai Y (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:10351. https://doi.org/10.1038/ncomms10351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogawa K, Suga H, Ozone C, Sakakibara M, Yamada T, Kano M, Mitsumoto K, Kasai T, Kodani Y, Nagasaki H, Yamamoto N, Hagiwara D, Goto M, Banno R, Sugimura Y, Arima H (2018) Vasopressin-secreting neurons derived from human embryonic stem cells through specific induction of dorsal hypothalamic progenitors. Sci Rep 8(1):3615. https://doi.org/10.1038/s41598-018-22053-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Couly G, Le Douarin NM (1988) The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development 103(Suppl):101–113

    PubMed  Google Scholar 

  9. Glasgow E, Karavanov AA, Dawid IB (1997) Neuronal and neuroendocrine expression of lim3, a LIM class homeobox gene, is altered in mutant zebrafish with axial signaling defects. Dev Biol 192(2):405–419. https://doi.org/10.1006/dbio.1997.8761

    Article  CAS  PubMed  Google Scholar 

  10. Takuma N, Sheng HZ, Furuta Y, Ward JM, Sharma K, Hogan BL, Pfaff SL, Westphal H, Kimura S, Mahon KA (1998) Formation of Rathke’s pouch requires dual induction from the diencephalon. Development 125(23):4835–4840

    CAS  PubMed  Google Scholar 

  11. Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG (1998) Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12(11):1691–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dasen JS, Rosenfeld MG (2001) Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci 24:327–355. https://doi.org/10.1146/annurev.neuro.24.1.327

    Article  CAS  PubMed  Google Scholar 

  13. Treier M, O’Connell S, Gleiberman A, Price J, Szeto DP, Burgess R, Chuang PT, McMahon AP, Rosenfeld MG (2001) Hedgehog signaling is required for pituitary gland development. Development 128(3):377–386

    CAS  PubMed  Google Scholar 

  14. Hui CC, Slusarski D, Platt KA, Holmgren R, Joyner AL (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 162(2):402–413. https://doi.org/10.1006/dbio.1994.1097

    Article  CAS  PubMed  Google Scholar 

  15. Ericson J, Norlin S, Jessell TM, Edlund T (1998) Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125(6):1005–1015

    CAS  PubMed  Google Scholar 

  16. Maruoka Y, Ohbayashi N, Hoshikawa M, Itoh N, Hogan BL, Furuta Y (1998) Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mech Dev 74(1–2):175–177. https://doi.org/10.1016/s0925-4773(98)00061-6

    Article  CAS  PubMed  Google Scholar 

  17. Celli G, LaRochelle WJ, Mackem S, Sharp R, Merlino G (1998) Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 17(6):1642–1655. https://doi.org/10.1093/emboj/17.6.1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hermesz E, Mackem S, Mahon KA (1996) Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development 122(1):41–52

    CAS  PubMed  Google Scholar 

  19. Spieler D, Baumer N, Stebler J, Koprunner M, Reichman-Fried M, Teichmann U, Raz E, Kessel M, Wittler L (2004) Involvement of Pax6 and Otx2 in the forebrain-specific regulation of the vertebrate homeobox gene ANF/Hesx1. Dev Biol 269(2):567–579. https://doi.org/10.1016/j.ydbio.2004.01.044

    Article  CAS  PubMed  Google Scholar 

  20. Mortensen AH, Schade V, Lamonerie T, Camper SA (2015) Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Hum Mol Genet 24(4):939–953. https://doi.org/10.1093/hmg/ddu506

    Article  CAS  PubMed  Google Scholar 

  21. Charles MA, Suh H, Hjalt TA, Drouin J, Camper SA, Gage PJ (2005) PITX genes are required for cell survival and Lhx3 activation. Mol Endocrinol 19(7):1893–1903. https://doi.org/10.1210/me.2005-0052

    Article  CAS  PubMed  Google Scholar 

  22. Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, Kioussi C, Gleiberman AS, Izpisúa-Belmonte JC, Rosenfeld MG (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13(4):484–494. https://doi.org/10.1101/gad.13.4.484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suh H, Gage PJ, Drouin J, Camper SA (2002) Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129(2):329–337

    CAS  PubMed  Google Scholar 

  24. Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang SP, Mahon KA, Westphal H (1996) Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272(5264):1004–1007. https://doi.org/10.1126/science.272.5264.1004

    Article  CAS  PubMed  Google Scholar 

  25. Kelberman D, Rizzoti K, Lovell-Badge R, Robinson ICAF, Dattani MT (2009) Genetic Regulation of Pituitary Gland Development in Human and Mouse. Endocr Rev 30(7):790–829. https://doi.org/10.1210/er.2009-0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H (1997) Multistep control of pituitary organogenesis. Science 278(5344):1809–1812. https://doi.org/10.1126/science.278.5344.1809

    Article  CAS  PubMed  Google Scholar 

  27. Davis SW, Keisler JL, Pérez-Millán MI, Schade V, Camper SA (2016) All hormone-producing cell types of the pituitary intermediate and anterior lobes derive from prop1-expressing progenitors. Endocrinology 157(4):1385–1396. https://doi.org/10.1210/en.2015-1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA, Wu W, Taketo MM, Kemler R, Grosschedl R, Rose D, Li X, Rosenfeld MG (2006) Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125(3):593–605. https://doi.org/10.1016/j.cell.2006.02.046

    Article  CAS  PubMed  Google Scholar 

  29. Zhao L, Bakke M, Parker KL (2001) Pituitary-specific knockout of steroidogenic factor 1. Mol Cell Endocrinol 185(1–2):27–32. https://doi.org/10.1016/s0303-7207(01)00621-9

    Article  CAS  PubMed  Google Scholar 

  30. Wataya T, Ando S, Muguruma K, Ikeda H, Watanabe K, Eiraku M, Kawada M, Takahashi J, Hashimoto N, Sasai Y (2008) Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc Natl Acad Sci USA 105(33):11796–11801. https://doi.org/10.1073/pnas.0803078105

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480(7375):57–62. https://doi.org/10.1038/nature10637

    Article  CAS  PubMed  Google Scholar 

  32. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. https://doi.org/10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zimmer B, Piao J, Ramnarine K, Tomishima MJ, Tabar V, Studer L (2016) Derivation of Diverse Hormone-Releasing Pituitary Cells from Human Pluripotent Stem Cells. Stem Cell Rep 6(6):858–872. https://doi.org/10.1016/j.stemcr.2016.05.005

    Article  CAS  Google Scholar 

  34. Kasai T, Suga H, Sakakibara M, Ozone C, Matsumoto R, Kano M, Mitsumoto K, Ogawa K, Kodani Y, Nagasaki H, Inoshita N, Sugiyama M, Onoue T, Tsunekawa T, Ito Y, Takagi H, Hagiwara D, Iwama S, Goto M, Banno R, Takahashi J, Arima H (2020) Hypothalamic contribution to pituitary functions is recapitulated in vitro using 3d-cultured human iPS cells. Cell Rep 30(1):18–24. https://doi.org/10.1016/j.celrep.2019.12.009e15

    Article  CAS  PubMed  Google Scholar 

  35. Studer L, Tabar V (2016) Human Pluripotent-Derived Lineages for Repairing Hypopituitarism. In: Pfaff D, Christen Y (eds) Stem Cells in Neuroendocrinology. Springer, Cham, pp 25–34. https://doi.org/10.1007/978-3-319-41603-8_3

    Chapter  Google Scholar 

  36. Kelava I, Lancaster Madeline A (2016) Stem cell models of human brain development. Cell Stem Cell 18(6):736–748. https://doi.org/10.1016/j.stem.2016.05.022

    Article  CAS  PubMed  Google Scholar 

  37. Protze SI, Lee JH, Keller GM (2019) Human pluripotent stem cell-derived cardiovascular cells: from developmental biology to therapeutic applications. Cell Stem Cell 25(3):311–327. https://doi.org/10.1016/j.stem.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  38. Sterneckert JL, Reinhardt P, Scholer HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15(9):625–639. https://doi.org/10.1038/nrg3764

    Article  CAS  PubMed  Google Scholar 

  39. Ferran JL, Puelles L, Rubenstein JL (2015) Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. Front Neuroanat 9(46):1–14. https://doi.org/10.3389/fnana.2015.00046

    Article  CAS  Google Scholar 

  40. Dateki S, Fukami M, Sato N, Muroya K, Adachi M, Ogata T (2008) OTX2 mutation in a patient with anophthalmia, short stature, and partial growth hormone deficiency: functional studies using the IRBP, HESX1, and POU1F1 promoters. J Clin Endocrinol Metab 93(10):3697–3702. https://doi.org/10.1210/jc.2008-0720

    Article  CAS  PubMed  Google Scholar 

  41. Iwama S, Sugimura Y, Kiyota A, Kato T, Enomoto A, Suzuki H, Iwata N, Takeuchi S, Nakashima K, Takagi H, Izumida H, Ochiai H, Fujisawa H, Suga H, Arima H, Shimoyama Y, Takahashi M, Nishioka H, Ishikawa SE, Shimatsu A, Caturegli P, Oiso Y (2015) Rabphilin-3A as a targeted autoantigen in lymphocytic infundibulo-neurohypophysitis. J Clin Endocrinol Metab 100(7):E946–E954. https://doi.org/10.1210/jc.2014-4209

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bando H, Iguchi G, Fukuoka H, Taniguchi M, Kawano S, Saitoh M, Yoshida K, Matsumoto R, Suda K, Nishizawa H, Takahashi M, Morinobu A, Kohmura E, Ogawa W, Takahashi Y (2015) A diagnostic pitfall in IgG4-related hypophysitis: infiltration of IgG4-positive cells in the pituitary of granulomatosis with polyangiitis. Pituitary 18(5):722–730. https://doi.org/10.1007/s11102-015-0650-9

    Article  CAS  PubMed  Google Scholar 

  43. Garon-Czmil J, Petitpain N, Rouby F, Sassier M, Babai S, Yelehe-Okouma M, Weryha G, Klein M, Gillet P (2019) Immune check point inhibitors-induced hypophysitis: a retrospective analysis of the French Pharmacovigilance database. Sci Rep 9(1):19419. https://doi.org/10.1038/s41598-019-56026-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto M, Iguchi G, Takeno R, Okimura Y, Sano T, Takahashi M, Nishizawa H, Handayaningshi AE, Fukuoka H, Tobita M, Saitoh T, Tojo K, Mokubo A, Morinobu A, Iida K, Kaji H, Seino S, Chihara K, Takahashi Y (2011) Adult combined GH, prolactin, and TSH deficiency associated with circulating PIT-1 antibody in humans. J Clin Invest 121(1):113–119. https://doi.org/10.1172/jci44073

    Article  CAS  PubMed  Google Scholar 

  45. Bando H, Iguchi G, Fukuoka H, Yamamoto M, Hidaka-Takeno R, Okimura Y, Matsumoto R, Suda K, Nishizawa H, Takahashi M, Tojo K, Takahashi Y (2014) Involvement of PIT-1-reactive cytotoxic T lymphocytes in anti-PIT-1 antibody syndrome. J Clin Endocrinol Metab 99(9):E1744–E1749. https://doi.org/10.1210/jc.2014-1769

    Article  CAS  PubMed  Google Scholar 

  46. Kanie K, Bando H, Iguchi G, Muguruma K, Matsumoto R, Hidaka-Takeno R, Okimura Y, Yamamoto M, Fujita Y, Fukuoka H, Yoshida K, Suda K, Nishizawa H, Ogawa W, Takahashi Y (2019) Pathogenesis of Anti-PIT-1 Antibody Syndrome: PIT-1 Presentation by HLA Class I on Anterior Pituitary Cells. J Endocr Soc 3(11):1969–1978. https://doi.org/10.1210/js.2019-00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata K-i, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M (2017) Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med 376(11):1038–1046. https://doi.org/10.1056/NEJMoa1608368

    Article  CAS  PubMed  Google Scholar 

  48. Miyagawa S, Domae K, Yoshikawa Y, Fukushima S, Nakamura T, Saito A, Sakata Y, Hamada S, Toda K, Pak K, Takeuchi M, Sawa Y (2017) Phase I Clinical Trial of Autologous Stem Cell-Sheet Transplantation Therapy for Treating Cardiomyopathy. J Am Heart Assoc. https://doi.org/10.1161/jaha.116.003918

    Article  PubMed  PubMed Central  Google Scholar 

  49. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484. https://doi.org/10.1038/nature12271

    Article  CAS  PubMed  Google Scholar 

  50. Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hämmerle M, Esk C, Bagley JA, Lindenhofer D, Chen G, Boehm M, Agu CA, Yang F, Fu B, Zuber J, Knoblich JA, Kerjaschki D, Penninger JM (2019) Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565(7740):505–510. https://doi.org/10.1038/s41586-018-0858-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benam KH, Novak R, Ferrante TC, Choe Y, Ingber DE (2020) Biomimetic smoking robot for in vitro inhalation exposure compatible with microfluidic organ chips. Nat Protoc 15(2):183–206. https://doi.org/10.1038/s41596-019-0230-y

    Article  CAS  PubMed  Google Scholar 

  52. Sonoyama T, Sone M, Honda K, Taura D, Kojima K, Inuzuka M, Kanamoto N, Tamura N, Nakao K (2012) Differentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells. Endocrinology 153(9):4336–4345. https://doi.org/10.1210/en.2012-1060

    Article  CAS  PubMed  Google Scholar 

  53. Takebe T, Sekine K, Kimura M, Yoshizawa E, Ayano S, Koido M, Funayama S, Nakanishi N, Hisai T, Kobayashi T, Kasai T, Kitada R, Mori A, Ayabe H, Ejiri Y, Amimoto N, Yamazaki Y, Ogawa S, Ishikawa M, Kiyota Y, Sato Y, Nozawa K, Okamoto S, Ueno Y, Taniguchi H (2017) Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep 21(10):2661–2670. https://doi.org/10.1016/j.celrep.2017.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Japan Agency for Medical Research and Development (AMED, The acceleration Program for Intractable Disease Research utilizing Disease-specific iPS cells: JP 18bm0804012h0002), grants in aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology (17K19684, 16H05332, to Y.T., and 18K16232 to R.M.), grants from the Uehara Memorial Foundation and the Naito Foundation, and grants from the Centor for iPS Cell Research and Application (CiRA, The Fellowship Program of Development of Young Researchers to R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Takahashi.

Ethics declarations

Conflict of interest

Authors have nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, R., Takahashi, Y. Human pituitary development and application of iPSCs for pituitary disease. Cell. Mol. Life Sci. 78, 2069–2079 (2021). https://doi.org/10.1007/s00018-020-03692-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03692-8

Keywords

Navigation