Skip to main content
Log in

P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to promote resistance to programmed cell death. Although the transcription factor NF-κB family is considered as the master regulator of cancer development and maintenance, it has been mainly studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Joerger AC, Fersht AR (2016) The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 85:375–404

    CAS  Google Scholar 

  2. Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W (2017) Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J Mol Biol 429:1595–1606

    CAS  Google Scholar 

  3. Meek DW (2015) Regulation of the p53 response and its relationship to cancer. Biochem J 469:325–346

    CAS  Google Scholar 

  4. Mitchell S, Vargas J, Hoffmann A (2016) Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med 8:227–241

    CAS  Google Scholar 

  5. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168:37–57

    CAS  Google Scholar 

  6. Pires BRB, Silva RCMC, Ferreira GM, Abdelhay E (2018) NF-kappaB: Two sides of the same coin. Genes (Basel) 9:24

    Google Scholar 

  7. Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324

    CAS  Google Scholar 

  8. Dey A, Tergaonkar V, Lane DP (2008) Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways. Nat Rev Drug Discov 7:1031–1040

    CAS  Google Scholar 

  9. Ak P, Levine AJ (2010) p53 and NF-κB: different strategies for responding to stress lead to a functional antagonism. FASEB J 24:3643–3652

    CAS  Google Scholar 

  10. Gudkov AV, Komarova EA (2016) p53 and the carcinogenicity of chronic inflammation. Cold Spring Harb Perspect Med 6:a026161

    Google Scholar 

  11. Wu H, Lozano G (1994) NF-kappa B activation of p53 A potential mechanism for suppressing cell growth in response to stress. J Biol Chem 269:20067–20074

    CAS  Google Scholar 

  12. Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404:892–897

    CAS  Google Scholar 

  13. Tergaonkar V, Perkins ND (2007) p53 and NF-kappaB crosstalk: IKKalpha tips the balance. Mol Cell 26:158–159

    CAS  Google Scholar 

  14. Johnson RF, Perkins ND (2012) Nuclear factor-κB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci 37:317–324

    CAS  Google Scholar 

  15. Lowe JM, Menendez D, Bushel PR, Shatz M, Kirk EL, Troester MA, Garantziotis S, Fessler MB, Resnick MA (2014) p53 and NF-κB coregulate proinflammatory gene responses in human macrophages. Cancer Res 74:2182–2192

    CAS  Google Scholar 

  16. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, Moretti M, De Smaele E, Beg AA, Tergaonkar V et al (2011) NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13:1272–1279

    CAS  Google Scholar 

  17. Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    CAS  Google Scholar 

  18. Ganapathy S, Xiao S, Seo S-J, Lall R, Yang M, Xu T, Su H, Shadfan M, Ha CS, Yuan Z-M (2014) Low-dose arsenic induces chemotherapy protection via p53/NF-κB-mediated metabolic regulation. Oncogene 33:1359–1366

    CAS  Google Scholar 

  19. Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, Roy S, Nicholson DW, Baldwin AS (2003) NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J. Biol. Chem. 278:2963–2968

    CAS  Google Scholar 

  20. Zamora M, Meroño C, Viñas O, Mampel T (2004) Recruitment of NF-kappaB into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis. J Biol Chem 279:38415–38423

    CAS  Google Scholar 

  21. Johnson RF, Witzel I-I, Perkins ND (2011) p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB. Cancer Res 71:5588–5597

    CAS  Google Scholar 

  22. Lee Y-K, Yi E-Y, Park S-Y, Jang W-J, Han Y-S, Jegal M-E, Kim Y-J (2018) Mitochondrial dysfunction suppresses p53 expression via calcium-mediated nuclear factor-kB signaling in HCT116 human colorectal carcinoma cells. BMB Rep 51:296–301

    CAS  Google Scholar 

  23. Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6:a026104

    Google Scholar 

  24. Valente JFA, Queiroz JA, Sousa F (2018) p53 as the focus of gene therapy: past, present and future. Curr Drug Targets 19:1801–1817

    CAS  Google Scholar 

  25. Foo SY, Nolan GP (1999) NF-kappaB to the rescue: RELs, apoptosis and cellular transformation. Trends Genet 15:229–235

    CAS  Google Scholar 

  26. Shao J, Fujiwara T, Kadowaki Y, Fukazawa T, Waku T, Itoshima T, Yamatsuji T, Nishizaki M, Roth JA, Tanaka N (2000) Overexpression of the wild-type p53 gene inhibits NF-kappaB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells. Oncogene 19:726–736

    CAS  Google Scholar 

  27. Ravi R, Mookerjee B, van Hensbergen Y, Bedi GC, Giordano A, El-Deiry WS, Fuchs EJ, Bedi A (1998) p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res 58:4531–4536

    CAS  Google Scholar 

  28. Fujioka S, Schmidt C, Sclabas GM, Li Z, Pelicano H, Peng B, Yao A, Niu J, Zhang W, Evans DB et al (2004) Stabilization of p53 is a novel mechanism for proapoptotic function of NF-kappaB. J Biol Chem 279:27549–27559

    CAS  Google Scholar 

  29. Yin L, Yu X (2018) Arsenic-induced apoptosis in the p53-proficient and p53-deficient cells through differential modulation of NFkB pathway. Food Chem Toxicol 118:849–860

    CAS  Google Scholar 

  30. Hu Y, Ge W, Wang X, Sutendra G, Zhao K, Dedeić Z, Slee EA, Baer C, Lu X (2015) Caspase cleavage of iASPP potentiates its ability to inhibit p53 and NF-κB. Oncotarget 6:42478–42490

    Google Scholar 

  31. Sun S-C (2017) The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 17:545–558

    CAS  Google Scholar 

  32. Mitchell JP, Carmody RJ (2018) NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol 335:41–84

    CAS  Google Scholar 

  33. Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M (2014) Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm (Lond) 11:23

    Google Scholar 

  34. Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I (2002) p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell 1:493–503

    CAS  Google Scholar 

  35. Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM (2009) Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci USA 106:2629–2634

    CAS  Google Scholar 

  36. Murphy SH, Suzuki K, Downes M, Welch GL, De Jesus P, Miraglia LJ, Orth AP, Chanda SK, Evans RM, Verma IM (2011) Tumor suppressor protein (p)53, is a regulator of NF-kappaB repression by the glucocorticoid receptor. Proc Natl Acad Sci USA 108:17117–17122

    CAS  Google Scholar 

  37. Ullah K, Rosendahl A-H, Izzi V, Bergmann U, Pihlajaniemi T, Mäki JM, Myllyharju J (2017) Hypoxia-inducible factor prolyl-4-hydroxylase-1 is a convergent point in the reciprocal negative regulation of NF-κB and p53 signaling pathways. Sci Rep 7:17220

    Google Scholar 

  38. Baldwin AS (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    CAS  Google Scholar 

  39. Kaltschmidt B, Greiner JFW, Kadhim HM, Kaltschmidt C (2018) Subunit-specific role of NF-κB in cancer. Biomedicines 6:44

    Google Scholar 

  40. Iannetti A, Ledoux AC, Tudhope SJ, Sellier H, Zhao B, Mowla S, Moore A, Hummerich H, Gewurz BE, Cockell SJ et al (2014) Regulation of p53 and Rb links the alternative NF-κB pathway to EZH2 expression and cell senescence. PLoS Genet 10:e1004642

    Google Scholar 

  41. Yeung KT, Yang J (2017) Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 11:28–39

    Google Scholar 

  42. Zhang Y, Weinberg RA (2018) Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med 12:361–373

    Google Scholar 

  43. Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    CAS  Google Scholar 

  44. Chang C-J, Chao C-H, Xia W, Yang J-Y, Xiong Y, Li C-W, Yu W-H, Rehman SK, Hsu JL, Lee H-H et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323

    CAS  Google Scholar 

  45. Lin Y, Mallen-St Clair J, Luo J, Sharma S, Dubinett S, St John M (2015) p53 modulates NF-κB mediated epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol 51:921–928

    CAS  Google Scholar 

  46. Wei B, Huang Q, Huang S, Mai W, Zhong X (2016) Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on reactive oxygen species (ROS) and NF-κB/p53 pathway. J Pharmacol Sci 131:77–83

    CAS  Google Scholar 

  47. Zhu B-S, Xing C-G, Lin F, Fan X-Q, Zhao K, Qin Z-H (2011) Blocking NF-κB nuclear translocation leads to p53-related autophagy activation and cell apoptosis. World J Gastroenterol 17:478–487

    CAS  Google Scholar 

  48. Pitolli C, Wang Y, Candi E, Shi Y, Melino G, Amelio I (2019) p53-Mediated tumor suppression: DNA-damage response and alternative mechanisms. Cancers (Basel) 11:1983

    CAS  Google Scholar 

  49. Sfikas A, Batsi C, Tselikou E, Vartholomatos G, Monokrousos N, Pappas P, Christoforidis S, Tzavaras T, Kanavaros P, Gorgoulis VG et al (2012) The canonical NF-κB pathway differentially protects normal and human tumor cells from ROS-induced DNA damage. Cell Signal 24:2007–2023

    CAS  Google Scholar 

  50. Kwon M, Jang H, Kim EH, Roh J-L (2016) Efficacy of poly (ADP-ribose) polymerase inhibitor olaparib against head and neck cancer cells: Predictions of drug sensitivity based on PAR-p53-NF-κB interactions. Cell Cycle 15:3105–3114

    CAS  Google Scholar 

  51. Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL, Jakobsen MR, Nevels MM, Bowie AG, Unterholzner L (2018) Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol Cell 71(745–760):e5

    Google Scholar 

  52. Poltz R, Naumann M (2012) Dynamics of p53 and NF-κB regulation in response to DNA damage and identification of target proteins suitable for therapeutic intervention. BMC Syst Biol 6:125

    CAS  Google Scholar 

  53. Jonak K, Kurpas M, Szoltysek K, Janus P, Abramowicz A, Puszynski K (2016) A novel mathematical model of ATM/p53/NF- κB pathways points to the importance of the DDR switch-off mechanisms. BMC Syst Biol 10:75

    Google Scholar 

  54. Nicolae CM, O’Connor MJ, Constantin D, Moldovan G-L (2018) NFκB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Oncogene 37:3647–3656

    CAS  Google Scholar 

  55. Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26:199–212

    Google Scholar 

  56. Scian MJ, Stagliano KER, Anderson MAE, Hassan S, Bowman M, Miles MF, Deb SP, Deb S (2005) Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25:10097–10110

    CAS  Google Scholar 

  57. Gulati AP, Yang Y-M, Harter D, Mukhopadhyay A, Aggarwal BB, Aggarwal BA, Benzil DL, Whysner J, Albino AP, Murali R et al (2006) Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1. Mol Carcinog 45:26–37

    CAS  Google Scholar 

  58. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R, Kalis M, Levrero M, Strano S, Gorgoulis VG et al (2007) Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67:2396–2401

    CAS  Google Scholar 

  59. Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, Lozano G, Pikarsky E, Forshew T, Rosenfeld N et al (2013) Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23:634–646

    CAS  Google Scholar 

  60. Lozano G, Levine AJ (1991) Tissue-specific expression of p53 in transgenic mice is regulated by intron sequences. Mol Carcinog 4:3–9

    CAS  Google Scholar 

  61. Deffie A, Wu H, Reinke V, Lozano G (1993) The tumor suppressor p53 regulates its own transcription. Mol Cell Biol 13:3415–3423

    CAS  Google Scholar 

  62. Hellin A-C, Calmant P, Gielen J, Bours V, Merville M-P (1998) Nuclear factor – κB-dependent regulation of p53 gene expression induced by daunomycin genotoxic drug. Oncogene 16:1187–1195

    CAS  Google Scholar 

  63. Beg AA, Finco TS, Nantermet PV, Baldwin AS (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol 13:3301–3310

    CAS  Google Scholar 

  64. Schäfer C, Göder A, Beyer M, Kiweler N, Mahendrarajah N, Rauch A, Nikolova T, Stojanovic N, Wieczorek M, Reich TR et al (2017) Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells. Cell Signal 29:218–225

    Google Scholar 

  65. Björkman M, Östling P, Härmä V, Virtanen J, Mpindi J-P, Rantala J, Mirtti T, Vesterinen T, Lundin M, Sankila A et al (2012) Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene 31:3444–3456

    Google Scholar 

  66. Yao Y, Zhou W-Y, He R-X (2019) Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-κB pathway. Biomed Pharmacother 109:1994–2004

    CAS  Google Scholar 

  67. Slack FJ, Chinnaiyan AM (2019) The Role of non-coding RNAs in oncology. Cell 179:1033–1055

    CAS  Google Scholar 

  68. Jeong D, Kim J, Nam J, Sun H, Lee Y-H, Lee T-J, Aguiar RCT, Kim S-W (2015) MicroRNA-124 links p53 to the NF-κB pathway in B-cell lymphomas. Leukemia 29:1868–1874

    CAS  Google Scholar 

  69. Ghose J, Bhattacharyya NP (2015) Transcriptional regulation of microRNA-100, -146a, and -150 genes by p53 and NFκB p65/RelA in mouse striatal STHdh(Q7)/Hdh(Q7) cells and human cervical carcinoma HeLa cells. RNA Biol 12:457–477

    Google Scholar 

  70. Yin M, Ren X, Zhang X, Luo Y, Wang G, Huang K, Feng S, Bao X, Huang K, He X et al (2015) Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene 34:691–703

    CAS  Google Scholar 

  71. Lankenau MA, Patel R, Liyanarachchi S, Maharry SE, Hoag KW, Duggan M, Walker CJ, Markowitz J, Carson WE, Eisfeld A-K et al (2015) MicroRNA-3151 inactivates TP53 in BRAF-mutated human malignancies. Proc Natl Acad Sci USA 112:E6744–6751

    CAS  Google Scholar 

  72. Cen B, Lang JD, Du Y, Wei J, Xiong Y, Bradley N, Wang D, DuBois RN (2019) Prostaglandin E2 induces MIR675–5p to promote colorectal tumor metastasis via modulation of p53 expression. Gastroenterology 158:971–984

    Google Scholar 

  73. Schmitt AM, Chang HY (2016) Long Noncoding RNAs in Cancer Pathways. Cancer Cell 29:452–463

    CAS  Google Scholar 

  74. Sun Q-M, Hu B, Fu P-Y, Tang W-G, Zhang X, Zhan H, Sun C, He Y-F, Song K, Xiao Y-S et al (2018) Long non-coding RNA 00607 as a tumor suppressor by modulating NF-κB p65/p53 signaling axis in hepatocellular carcinoma. Carcinogenesis 39:1438–1446

    CAS  Google Scholar 

  75. Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R (2018) p53 mediated transcriptional regulation of long non-coding RNA by 1-hydroxy-1-norresistomycin triggers intrinsic apoptosis in adenocarcinoma lung cancer. Chem Biol Interact 287:1–12

    CAS  Google Scholar 

  76. Webster GA, Perkins ND (1999) Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 19:3485–3495

    CAS  Google Scholar 

  77. Chang N-S (2002) The non-ankyrin C terminus of Ikappa Balpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression. J Biol Chem 277:10323–10331

    CAS  Google Scholar 

  78. Zhou M, Gu L, Zhu N, Woods WG, Findley HW (2003) Transfection of a dominant-negative mutant NF-kB inhibitor (IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53. Oncogene 22:8137–8144

    CAS  Google Scholar 

  79. Dreyfus DH, Nagasawa M, Gelfand EW, Ghoda LY (2005) Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors. BMC Immunol 6:12

    Google Scholar 

  80. Li X, Xing D, Wang J, Zhu D-B, Zhang L, Chen X-J, Sun F-Y, Hong A (2006) Effects of IkappaBalpha and its mutants on NF-kappaB and p53 signaling pathways. World J Gastroenterol 12:6658–6664

    CAS  Google Scholar 

  81. Crivellaro S, Panuzzo C, Carrà G, Volpengo A, Crasto F, Gottardi E, Familiari U, Papotti M, Torti D, Piazza R et al (2015) Non genomic loss of function of tumor suppressors in CML: BCR-ABL promotes IκBα mediated p53 nuclear exclusion. Oncotarget 6:25217–25225

    Google Scholar 

  82. Carrà G, Crivellaro S, Taulli R, Guerrasio A, Saglio G, Morotti A (2016) Mechanisms of p53 functional de-regulation: role of the IκB-α/p53 complex. Int J Mol Sci 17:1997

    Google Scholar 

  83. Heyne K, Winter C, Gerten F, Schmidt C, Roemer K (2013) A novel mechanism of crosstalk between the p53 and NFκB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle 12:2479–2492

    CAS  Google Scholar 

  84. Schneider G, Henrich A, Greiner G, Wolf V, Lovas A, Wieczorek M, Wagner T, Reichardt S, von Werder A, Schmid RM et al (2010) Cross talk between stimulated NF-kappaB and the tumor suppressor p53. Oncogene 29:2795–2806

    CAS  Google Scholar 

  85. Fusella F, Seclì L, Busso E, Krepelova A, Moiso E, Rocca S, Conti L, Annaratone L, Rubinetto C, Mello-Grand M et al (2017) The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun 8:1636

    Google Scholar 

Download references

Acknowledgments

We thank the Dept. of Clinical and Biological Science for funding our research (Ex-60 grant). Italian Association for Cancer Research Star-Up Grant-15405 to RT.

Author information

Authors and Affiliations

Authors

Contributions

GC and MFL wrote the manuscript and generated the figures. BM helped in the preparation of the manuscript. RT and AM reviewed the manuscript.

Corresponding authors

Correspondence to Giovanna Carrà or Alessandro Morotti.

Ethics declarations

Conflicts of interest

Authors have no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrà, G., Lingua, M.F., Maffeo, B. et al. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell. Mol. Life Sci. 77, 4449–4458 (2020). https://doi.org/10.1007/s00018-020-03524-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03524-9

Keywords

Navigation