Skip to main content
Log in

Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) include a variety of nanosized vesicles released to the extracellular microenvironment by the vast majority of cells transferring bioactive lipids, proteins, mRNA, miRNA or non-coding RNA, as means of intercellular communication. Remarkably, among other fields of research, their use has become promising for immunomodulation, tissue repair and as source for novel disease-specific molecular signatures or biomarkers. However, a major challenge is to define accurate, reliable and easily implemented techniques for EV isolation due to their nanoscale size and high heterogeneity. In this context, differential ultracentrifugation (dUC) has been the most widely used laboratory methodology, but alternative procedures have emerged to allow purer EV preparations with easy implementation. Here, we present and discuss the most used of the different EV isolation methods, focusing on the increasing impact of size exclusion chromatography (SEC) on the resulting EV preparations from in vitro cultured cells-conditioned medium and biological fluids. Comparatively, low protein content and cryo-electron microscopy analysis show that SEC removes most of the overabundant soluble plasma proteins, which are not discarded using dUC or precipitating agents, while being more user friendly and less time-consuming than gradient-based EV isolation. Also, SEC highly maintains the major EVs’ characteristics, including vesicular structure and content, which guarantee forthcoming applications. In sum, together with scaling-up possibilities to increase EV recovery and manufacturing following high-quality standards, SEC could be easily adapted to most laboratories to assist EV-associated biomarker discovery and to deliver innovative cell-free immunomodulatory and pro-regenerative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data source: EV-TRACK database, August 2018 [89]

Fig. 4

Similar content being viewed by others

References

  1. Yáñez-Mó M, Siljander PR-M, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  2. Shah R, Patel T, Freedman JE (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379:958–966. https://doi.org/10.1056/NEJMra1704286

    Article  CAS  PubMed  Google Scholar 

  3. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23:812–823. https://doi.org/10.1038/mt.2015.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fais S, O’Driscoll L, Borras FE et al (2016) Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano. https://doi.org/10.1021/acsnano.5b08015

    Article  PubMed  Google Scholar 

  5. Kowal J, Tkach M, Théry C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125. https://doi.org/10.1016/j.ceb.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  6. Van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213

    Article  CAS  PubMed  Google Scholar 

  7. Colombo M, Moita C, van Niel G et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565. https://doi.org/10.1242/jcs.128868

    Article  CAS  PubMed  Google Scholar 

  8. Booth AM, Fang Y, Fallon JK et al (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172:923–935. https://doi.org/10.1083/jcb.200508014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang T, Gilkes DM, Takano N et al (2014) Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci 111:E3234–E3242. https://doi.org/10.1073/pnas.1410041111

    Article  CAS  PubMed  Google Scholar 

  10. Hugel B, Martínez MC, Kunzelmann C, Freyssinet J-M (2005) Membrane microparticles: two sides of the coin. Physiology 20:22–27. https://doi.org/10.1152/physiol.00029.2004

    Article  CAS  PubMed  Google Scholar 

  11. van der Pol E, Böing AN, Harrison P et al (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705. https://doi.org/10.1124/pr.112.005983

    Article  CAS  PubMed  Google Scholar 

  12. Willms E, Johansson HJ, Mäger I et al (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519. https://doi.org/10.1038/srep22519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Freitas D, Kim HS et al (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20:332–343. https://doi.org/10.1038/s41556-018-0040-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor DD, Shah S (2015) Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 87:3–10. https://doi.org/10.1016/J.YMETH.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  15. Willms E, Cabañas C, Mäger I et al (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 9:738. https://doi.org/10.3389/fimmu.2018.00738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Théry C, Clayton A, Amigorena S, Raposo G (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006:3.22.1–3.22.29

    Article  Google Scholar 

  17. Gardiner C, Di Vizio D, Sahoo S et al (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell vesicles 5:32945

    Article  CAS  PubMed  Google Scholar 

  18. Momen-Heravi F, Balaj L, Alian S et al (2012) Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol 3:162. https://doi.org/10.3389/fphys.2012.00162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Livshits MA, Khomyakova E, Evtushenko EG et al (2015) Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 5:17319. https://doi.org/10.1038/srep17319

    Article  CAS  PubMed  Google Scholar 

  20. Cvjetkovic A, Lötvall J, Lässer C (2014) The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 3:23111. https://doi.org/10.3402/jev.v3.23111

    Article  CAS  Google Scholar 

  21. Baranyai T, Herczeg K, Onódi Z et al (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10:e0145686. https://doi.org/10.1371/journal.pone.0145686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Welton JL, Webber JP, Botos L-A et al (2015) Ready-made chromatography columns for extracellular vesicle isolation from plasma. J Extracell vesicles 4:27269

    Article  PubMed  Google Scholar 

  23. Linares R, Tan S, Gounou C et al (2015) High-speed centrifugation induces aggregation of extracellular vesicles. Taylor & Francis, Routledge

    Book  Google Scholar 

  24. Fischer H, Polikarpov I, Craievich AF (2004) Average protein density is a molecular-weight-dependent function. Protein Sci 13:2825–2828. https://doi.org/10.1110/ps.04688204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Webber J, Clayton A (2013) How pure are your vesicles? J Extracell Vesicles 2:19861. https://doi.org/10.3402/jev.v2i0.19861

    Article  Google Scholar 

  26. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–978

    Article  CAS  PubMed  Google Scholar 

  27. Bobrie A, Colombo M, Krumeich S et al (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles 1:18397. https://doi.org/10.3402/jev.v1i0.18397

    Article  CAS  Google Scholar 

  28. Aalberts M, van Dissel-Emiliani FMF, van Adrichem NPH et al (2012) Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod 86:82. https://doi.org/10.1095/biolreprod.111.095760

    Article  CAS  PubMed  Google Scholar 

  29. Jeppesen DK, Hvam ML, Primdahl-Bengtson B et al (2014) Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 3:25011

    Article  CAS  PubMed  Google Scholar 

  30. Lobb RJ, Becker M, Wen SW et al (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031. https://doi.org/10.3402/jev.v4.27031

    Article  PubMed  Google Scholar 

  31. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res, Int

    Google Scholar 

  32. Tang Y-T, Huang Y-Y, Zheng L et al (2017) Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 40:834–844. https://doi.org/10.3892/ijmm.2017.3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Helwa I, Cai J, Drewry MD et al (2017) A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One 12:e0170628. https://doi.org/10.1371/journal.pone.0170628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Royo F, Zuñiga-Garcia P, Sanchez-Mosquera P et al (2016) Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J Extracell Vesicles 5:29497

    Article  CAS  PubMed  Google Scholar 

  35. Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L et al (2016) Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep 6:33641. https://doi.org/10.1038/srep33641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koliha N, Wiencek Y, Heider U et al (2016) A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell vesicles 5:29975

    Article  CAS  PubMed  Google Scholar 

  37. Wiklander OPB, Bostancioglu RB, Welsh JA et al (2018) Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. Front Immunol 9:1326. https://doi.org/10.3389/fimmu.2018.01326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Balaj L, Atai NA, Chen W et al (2015) Heparin affinity purification of extracellular vesicles. Sci Rep. https://doi.org/10.1038/srep10266

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghosh A, Davey M, Chute IC et al (2014) Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One 9:e110443. https://doi.org/10.1371/journal.pone.0110443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakai W, Yoshida T, Diez D et al (2016) A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep 6:33935. https://doi.org/10.1038/srep33935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morton LA (2013) Identifying peptide sensors for highly curved membranes and lipid components. University of Colorado, Boulder

    Google Scholar 

  42. Welsh JA, Holloway JA, Wilkinson JS, Englyst NA (2017) Extracellular vesicle flow cytometry analysis and standardization. Front Cell Dev Biol 5:78. https://doi.org/10.3389/fcell.2017.00078

    Article  PubMed  PubMed Central  Google Scholar 

  43. van der Pol E, Sturk A, van Leeuwen T et al (2018) Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost 16:1236–1245. https://doi.org/10.1111/jth.14009

    Article  PubMed  Google Scholar 

  44. Libregts SFWM, Arkesteijn GJA, Németh A et al (2018) Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest. J Thromb Haemost. https://doi.org/10.1111/jth.14154

    Article  PubMed  Google Scholar 

  45. Nolte-’t Hoen ENM, van der Vlist EJ, Aalberts M et al (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8:712–720

    Article  CAS  PubMed  Google Scholar 

  46. Kormelink TG, Arkesteijn GJA, Nauwelaers FA et al (2016) Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytom Part A 89:135–147. https://doi.org/10.1002/cyto.a.22644

    Article  CAS  Google Scholar 

  47. Higginbotham JN, Zhang Q, Jeppesen DK et al (2016) Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting. J Extracell vesicles 5:29254

    Article  CAS  PubMed  Google Scholar 

  48. Morales-Kastresana A, Telford B, Musich TA et al (2017) Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep 7:1878. https://doi.org/10.1038/s41598-017-01731-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permeation chromatography. J Polym Sci Part B Polym Lett 5:753–759. https://doi.org/10.1002/pol.1967.110050903

    Article  Google Scholar 

  50. Böing AN, van der Pol E, Grootemaat AE et al (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell vesicles. https://doi.org/10.3402/jev.v3.23430

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu R, Greening DW, Rai A et al (2015) Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods 87:11–25. https://doi.org/10.1016/j.ymeth.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  52. Xu R, Simpson RJ, Greening DW (2017) A protocol for isolation and proteomic characterization of distinct extracellular vesicle subtypes by sequential centrifugal ultrafiltration. In: Methods in molecular biology (Clifton, N.J.). pp 91–116

  53. Musante L, Tataruch D, Gu D et al (2015) A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep 4:7532. https://doi.org/10.1038/srep07532

    Article  CAS  Google Scholar 

  54. Giddings JC, Myers MN (1976) Flow-field-flow fractionation: a versatile new separation method. Science (80-) 193:1244–1245. https://doi.org/10.1126/science.959835

    Article  CAS  Google Scholar 

  55. Kang D, Oh S, Ahn S-M et al (2008) Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography–tandem mass spectrometry. J Proteome Res 7:3475–3480. https://doi.org/10.1021/pr800225z

    Article  CAS  PubMed  Google Scholar 

  56. Petersen KE, Manangon E, Hood JL et al (2014) A review of exosome separation techniques and characterization of B16-F10 mouse melanoma exosomes with AF4-UV-MALS-DLS-TEM. Anal Bioanal Chem 406:7855–7866. https://doi.org/10.1007/s00216-014-8040-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sitar S, Kejžar A, Pahovnik D et al (2015) Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem 87:9225–9233. https://doi.org/10.1021/acs.analchem.5b01636

    Article  CAS  PubMed  Google Scholar 

  58. Petersen KE, Shiri F, White T et al (2018) Exosome isolation: cyclical electrical field flow fractionation in low-ionic-strength fluids. Anal Chem 90:12783–12790. https://doi.org/10.1021/acs.analchem.8b03146

    Article  CAS  PubMed  Google Scholar 

  59. Hood JL, Scott MJ, Wickline SA (2014) Maximizing exosome colloidal stability following electroporation. Anal Biochem 448:41–49. https://doi.org/10.1016/J.AB.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  60. Akagi T, Kato K, Hanamura N et al (2014) Evaluation of desialylation effect on zeta potential of extracellular vesicles secreted from human prostate cancer cells by on-chip microcapillary electrophoresis. Jpn J Appl Phys 53:06JL01. https://doi.org/10.7567/JJAP.53.06JL01

    Article  CAS  Google Scholar 

  61. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S (2014) Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14:1891–1900. https://doi.org/10.1039/C4LC00136B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gholizadeh S, Shehata Draz M, Zarghooni M et al (2017) Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: current status and future directions. Biosens Bioelectron 91:588–605. https://doi.org/10.1016/J.BIOS.2016.12.062

    Article  CAS  PubMed  Google Scholar 

  63. Guo S-C, Tao S-C, Dawn H (2018) Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles. J Extracell Vesicles 7:1508271. https://doi.org/10.1080/20013078.2018.1508271

    Article  PubMed  PubMed Central  Google Scholar 

  64. Muller L, Hong C-S, Stolz DB et al (2014) Isolation of biologically-active exosomes from human plasma. J Immunol Methods. https://doi.org/10.1016/j.jim.2014.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ronquist GK, Larsson A, Stavreus-Evers A, Ronquist G (2012) Prostasomes are heterogeneous regarding size and appearance but affiliated to one DNA-containing exosome family. Prostate 72:1736–1745. https://doi.org/10.1002/pros.22526

    Article  CAS  PubMed  Google Scholar 

  66. Lane RE, Korbie D, Trau M, Hill MM (2019) Optimising size exclusion chromatography for extracellular vesicle enrichment and proteomic analysis from clinically relevant samples. Proteomics. https://doi.org/10.1002/pmic.201800156

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sódar BW, Kittel Á, Pálóczi K et al (2016) Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 6:24316. https://doi.org/10.1038/srep24316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Karimi N, Cvjetkovic A, Jang SC et al (2018) Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci 75:2873–2886. https://doi.org/10.1007/s00018-018-2773-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Corso G, Mäger I, Lee Y et al (2017) Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci Rep 7:11561. https://doi.org/10.1038/s41598-017-10646-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Onódi Z, Pelyhe C, Terézia Nagy C et al (2018) Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol 9:1479. https://doi.org/10.3389/fphys.2018.01479

    Article  PubMed  PubMed Central  Google Scholar 

  71. Monguió-Tortajada M, Roura S, Gálvez-Montón C et al (2017) Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics 7:270–284. https://doi.org/10.7150/thno.16154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lozano-Ramos I, Bancu I, Oliveira-Tercero A et al (2015) Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. J Extracell vesicles 4:27369. https://doi.org/10.3402/jev.v4.27369

    Article  CAS  PubMed  Google Scholar 

  73. de Menezes-Neto A, Sáez MJF, Lozano-Ramos I et al (2015) Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell vesicles 4:27378

    Article  CAS  PubMed  Google Scholar 

  74. Carreras-Planella L, Soler-Majoral J, Rubio-Esteve C et al (2017) Characterization and proteomic profile of extracellular vesicles from peritoneal dialysis efflux. PLoS One 12:e0176987. https://doi.org/10.1371/journal.pone.0176987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roura S, Gálvez-Montón C, de Gonzalo-Calvo D et al (2017) Extracellular vesicles do not contribute to higher circulating levels of soluble LRP1 in idiopathic dilated cardiomyopathy. J Cell Mol Med 21:3000–3009. https://doi.org/10.1111/jcmm.13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lozano-Ramos SI, Bancu I, Carreras-Planella L et al (2018) Molecular profile of urine extracellular vesicles from normo-functional kidneys reveal minimal differences between living and deceased donors. BMC Nephrol 19:189. https://doi.org/10.1186/s12882-018-0985-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roura S, Gámez-Valero A, Lupón J et al (2018) Proteomic signature of circulating extracellular vesicles in dilated cardiomyopathy. Lab Investig. https://doi.org/10.1038/s41374-018-0044-5

    Article  PubMed  Google Scholar 

  78. Monguió-Tortajada M, Morón-Font M, Gámez-Valero A et al (2019) Extracellular-vesicle isolation from different biological fluids by size-exclusion chromatography. Curr Protoc Stem Cell Biol. https://doi.org/10.1002/cpsc.82

    Article  PubMed  Google Scholar 

  79. Nordin JZ, Lee Y, Vader P et al (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomed Nanotechnol Biol Med 11:879–883. https://doi.org/10.1016/J.NANO.2015.01.003

    Article  CAS  Google Scholar 

  80. Mol EA, Goumans M-J, Doevendans PA et al (2017) Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomed Nanotechnol Biol Med 13:2061–2065. https://doi.org/10.1016/j.nano.2017.03.011

    Article  CAS  Google Scholar 

  81. Montaner-Tarbes S, Borrás FE, Montoya M et al (2016) Serum-derived exosomes from non-viremic animals previously exposed to the porcine respiratory and reproductive virus contain antigenic viral proteins. Vet Res 47:59. https://doi.org/10.1186/s13567-016-0345-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Watson DC, Bayik D, Srivatsan A et al (2016) Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105:195–205. https://doi.org/10.1016/j.biomaterials.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  83. Pachler K, Lener T, Streif D et al (2017) A good manufacturing practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy 19:458–472. https://doi.org/10.1016/j.jcyt.2017.01.001

    Article  PubMed  Google Scholar 

  84. Andriolo G, Provasi E, Lo Cicero V et al (2018) Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method. Front Physiol 9:1169. https://doi.org/10.3389/fphys.2018.01169

    Article  PubMed  PubMed Central  Google Scholar 

  85. Heldring N, Mäger I, Wood MJA et al (2015) Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther 26:506–517. https://doi.org/10.1089/hum.2015.072

    Article  CAS  PubMed  Google Scholar 

  86. Lener T, Gimona M, Aigner L et al (2015) Applying extracellular vesicles based therapeutics in clinical trials—an ISEV position paper. J Extracell vesicles 4:30087

    Article  CAS  PubMed  Google Scholar 

  87. Colao IL, Corteling R, Bracewell D, Wall I (2018) Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med 24:242–256. https://doi.org/10.1016/j.molmed.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  88. Horenstein AL, Durelli I, Malavasi F (2005) Purification of clinical-grade monoclonal antibodies by chromatographic methods. Methods Mol Biol 308:191–208. https://doi.org/10.1385/1-59259-922-2:191

    Article  CAS  PubMed  Google Scholar 

  89. Van Deun J, Mestdagh P, Agostinis P et al (2017) EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 14:228–232. https://doi.org/10.1038/nmeth.4185

    Article  CAS  PubMed  Google Scholar 

  90. Hagel L, Östberg M, Andersson T (1996) Apparent pore size distributions of chromatography media. J Chromatogr A 743:33–42. https://doi.org/10.1016/0021-9673(96)00130-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Fundació La Marató de TV3 (201516-10, 201502-30), SGR programme of Generalitat de Catalunya (2017-SGR-301 REMAR Group, and 2017-SGR-483 ICREC Group), ISCIII-REDinREN (RD16/0009 Feder Funds) and Instituto Carlos III (PI17/00336), grants from the Spanish Ministry of Economy and Competitiveness—MINECO (SAF2017-84324-C2-1-R), Instituto de Salud Carlos III (PI17/01487, PIC18/00014), Red de Terapia Celular-TerCel (RD16/00111/0006), CIBER Cardiovascular (CB16/11/00403) projects, as part of the Plan Nacional de I + D+I, and co-funded by ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER). MMT is sponsored by the PERIS (SLT002/16/00234) from the Generalitat de Catalunya, “la Caixa” Banking Foundation, and Societat Catalana de Cardiologia. This work has been developed in the context of AdvanceCat with the support of ACCIÓ (Catalonia Trade & Investment; Generalitat de Catalunya) under the Catalonian ERDF (European Regional Development Fund) operational program 2014–2020; FEB is a researcher from Fundació Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, supported by the Health Department of the Catalan Government (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Contributions

MM-T, SR and FB wrote the manuscript; MM-T, CG-M, AB-G, SR and FB: critical reading and final approval of the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Santiago Roura or Francesc E. Borràs.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monguió-Tortajada, M., Gálvez-Montón, C., Bayes-Genis, A. et al. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell. Mol. Life Sci. 76, 2369–2382 (2019). https://doi.org/10.1007/s00018-019-03071-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03071-y

Keywords

Navigation