Skip to main content

Advertisement

Log in

Cerebrovascular disorders associated with genetic lesions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cerebrovascular disorders are underlain by perturbations in cerebral blood flow and abnormalities in blood vessel structure. Here, we provide an overview of the current knowledge of select cerebrovascular disorders that are associated with genetic lesions and connect genomic findings with analyses aiming to elucidate the cellular and molecular mechanisms of disease pathogenesis. We argue that a mechanistic understanding of genetic (familial) forms of cerebrovascular disease is a prerequisite for the development of rational therapeutic approaches, and has wider implications for treatment of sporadic (non-familial) forms, which are usually more common.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415

    Article  CAS  PubMed  Google Scholar 

  2. Walchli T, Wacker A, Frei K, Regli L, Schwab ME, Hoerstrup SP, Gerhardt H, Engelhardt B (2015) Wiring the Vascular Network with Neural Cues: a CNS Perspective. Neuron 87(2):271–296

    Article  CAS  PubMed  Google Scholar 

  3. Eichmann A, Thomas JL (2013) Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 3(1):a006551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866

    Article  CAS  PubMed  Google Scholar 

  7. Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18(7):419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Louvi, A. and Gunel, M., Genetics of Cerebral Cavernous Malformations, in Youmans and Winn Neurological Surgery H.R. Winn, Editor. 2017, Elsevier. p. 3547-3553

  9. Barak T, Cheng Y, Youngblood MW, Yasuno K, Gunel M (2018) Genetics of intracranial aneurysms. In: Winn HR (ed) Youmans and Winn neurological surgery. Elsevier, Amsterdam, pp 3198–3206

    Google Scholar 

  10. NINDS Stroke Genetics Network (SiGN), International Stroke Genetics Consortium (ISGC) (2016) Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol 15(2):174–184

    Article  CAS  Google Scholar 

  11. Duran D, Karschnia P, Gaillard JR, Karimy JK, Youngblood MW, DiLuna ML, Matouk CC, Aagaard-Kienitz B, Smith ER, Orbach DB, Rodesch G, Berenstein A, Gunel M, Kahle KT (2018) Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr 21:1–8

    Article  Google Scholar 

  12. Luschka H (1854) Cavernose Blutgeschwulste des Gehirns. Virch Arch Path Anat. 6(4):457–470

    Google Scholar 

  13. Cushing H, Bailey P (1928) Tumors arising from the blood vessels of the brain: angiomatous malformations and hemangioblastomas, vol 3. Thomas, C.C., Springfield

    Google Scholar 

  14. Dandy WE (1928) Arteriovenous aneurysm of the brain. Arch Surg 17:190–243

    Article  Google Scholar 

  15. Dandy WE (1928) Venous abnormalities and angiomas of the brain. Arch Surg 17:715–793

    Article  Google Scholar 

  16. McCormick WF (1966) The pathology of vascular (“arteriovenous”) malformations. J Neurosurg 24(4):807–816

    Article  CAS  PubMed  Google Scholar 

  17. Russell DS, Rubenstein LJ (1989) Pathology of tumors of the nervous system. Williams and Wilkins, Baltimore

    Google Scholar 

  18. McCormick WF (1984) Pathology of vascular malformations of the brain in Intracranial Vascular Malformations In: Wilson CB, Stein BM (eds), Williams & Wilkins, Baltimore, pp 44–63

  19. Demick DA (1991) Cerebrovascular malformation causing sudden death. Analysis of three cases and review of the literature. Am J Forensic Med Pathol 12(1):45–49

    Article  CAS  PubMed  Google Scholar 

  20. Berenstein A, Lasjaunias P, ter Brugge KG (2004) Cerebral vascular malformations: incidence, classification, angioarchitecture, and symptomatology of brain arteriovenous and venous malformations, in surgical neuroangiography. Springer: Berlin, Heidelberg, pp 609–694

  21. Bos D, Poels MM, Adams HH, Akoudad S, Cremers LG, Zonneveld HI, Hoogendam YY, Verhaaren BF, Verlinden VJ, Verbruggen JG, Peymani A, Hofman A, Krestin GP, Vincent AJ, Feelders RA, Koudstaal PJ, van der Lugt A, Ikram MA, Vernooij MW (2016) Prevalence, clinical management, and natural course of incidental findings on brain mr images: the population-based rotterdam scan study. Radiology 281(2):507–515

    Article  PubMed  Google Scholar 

  22. Berry RG, Alpers BJ, White JC (1966) The site, structure and frequency of intracranial aneurysms, angiomas and arteriovenous abnormalities. Res Publ Assoc Res Nerv Ment Dis 41:40–72

    CAS  PubMed  Google Scholar 

  23. Otten P, Pizzolato GP, Rilliet B, Berney J (1989) 131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies. Neurochirurgie 35(2):82–83 (128-31)

    CAS  PubMed  Google Scholar 

  24. Del Jr Curling O, Jr Kelly DL, Elster AD, Craven TE (1991) An analysis of the natural history of cavernous angiomas. J Neurosurg 75(5):702–708

    Article  PubMed  Google Scholar 

  25. Robinson JR, Awad IA, Little JR (1991) Natural history of the cavernous angioma. J Neurosurg 75(5):709–714

    Article  CAS  PubMed  Google Scholar 

  26. Sage MR, Brophy BP, Sweeney C, Phipps S, Perrett LV, Sandhu A, Albertyn LE (1993) Cavernous haemangiomas (angiomas) of the brain: clinically significant lesions. Australas Radiol 37(2):147–155

    Article  CAS  PubMed  Google Scholar 

  27. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828

    Article  CAS  PubMed  Google Scholar 

  28. Morris Z, Whiteley WN, Longstreth WT Jr, Weber F, Lee YC, Tsushima Y, Alphs H, Ladd SC, Warlow C, Wardlaw JM, Al-Shahi Salman R (2009) Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 339:b3016

    Article  PubMed  PubMed Central  Google Scholar 

  29. Flemming KD, Graff-Radford J, Aakre J, Kantarci K, Lanzino G, Brown RD Jr, Mielke MM, Roberts RO, Kremers W, Knopman DS, Petersen RC, Jack CR Jr (2017) Population-based prevalence of cerebral cavernous malformations in older adults: mayo clinic study of aging. JAMA Neurol 74(7):801–805

    Article  PubMed  PubMed Central  Google Scholar 

  30. Campbell PG, Jabbour P, Yadla S, Awad IA (2010) Emerging clinical imaging techniques for cerebral cavernous malformations: a systematic review. Neurosurg Focus 29(3):E6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hart BL, Taheri S, Rosenberg GA, Morrison LA (2013) Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations. Transl Stroke Res 4(5):500–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, Shi C, Dykstra C, Wang Y, Prasad PV, Edelman RR, Awad IA (2014) Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest Radiol 49(7):498–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moultrie F, Horne MA, Josephson CB, Hall JM, Counsell CE, Bhattacharya JJ, Papanastassiou V, Sellar RJ, Warlow CP, Murray GD, Al-Shahi Salman R, Scottish Audit of Intracranial Vascular Malformations steering, c., and collaborators (2014) Outcome after surgical or conservative management of cerebral cavernous malformations. Neurology 83(7):582–589

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80(3):422–432

    Article  CAS  PubMed  Google Scholar 

  35. Zabramski JM, Kalani YS (2017) Natural history of cavernous malformations. In: Winn HR (ed) Youmans and Winn neurological surgery. Elsevier, Amsterdam, pp 3537–3546

    Google Scholar 

  36. Siegel AM, Andermann E, Badhwar A, Rouleau GA, Wolford GL, Andermann F, Hess K (1998) Anticipation in familial cavernous angioma: a study of 52 families from International Familial Cavernous Angioma Study. IFCAS Group. Lancet 352(9141):1676–1677

    Article  CAS  PubMed  Google Scholar 

  37. Kufs H (1928) Uber die heredofamilare Angiomatose des Gehirns und der Retina, ihre Beziehingen zueinander und sur Angiomatose der Haut. Z Neurol Psychiatrie 113:651–686

    Article  Google Scholar 

  38. Dubovsky J, Zabramski JM, Kurth J, Spetzler RF, Rich SS, Orr HT, Weber JL (1995) A gene responsible for cavernous malformations of the brain maps to chromosome 7q. Hum Mol Genet 4(3):453–458

    Article  CAS  PubMed  Google Scholar 

  39. Gunel M, Awad IA, Anson J, Lifton RP (1995) Mapping a gene causing cerebral cavernous malformation to 7q11.2-q21. Proc Natl Acad Sci USA 92(14):6620–6624

    Article  CAS  PubMed  Google Scholar 

  40. Johnson EW, Iyer LM, Rich SS, Orr HT, Gil-Nagel A, Kurth JH, Zabramski JM, Marchuk DA, Weissenbach J, Clericuzio CL, Davis LE, Hart BL, Gusella JF, Kosofsky BE, Louis DN, Morrison LA, Green ED, Weber JL (1995) Refined localization of the cerebral cavernous malformation gene (CCM1) to a 4-cM interval of chromosome 7q contained in a well-defined YAC contig. Genome Res 5(4):368–380

    Article  CAS  PubMed  Google Scholar 

  41. Gil-Nagel A, Dubovsky J, Wilcox KJ, Stewart JM, Anderson VE, Leppik IE, Orr HT, Johnson EW, Weber JL, Rich SS (1996) Familial cerebral cavernous angioma: a gene localized to a 15-cM interval on chromosome 7q. Ann Neurol 39(6):807–810

    Article  CAS  PubMed  Google Scholar 

  42. Notelet L, Chapon F, Khoury S, Vahedi K, Chodkiewicz JP, Courtheoux P, Iba-Zizen MT, Cabanis EA, Lechevalier B, Tournier-Lasserve E, Houtteville JP (1997) Familial cavernous malformations in a large French kindred: mapping of the gene to the CCM1 locus on chromosome 7q. J Neurol Neurosurg Psychiatry 63(1):40–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Craig HD, Gunel M, Cepeda O, Johnson EW, Ptacek L, Steinberg GK, Ogilvy CS, Berg MJ, Crawford SC, Scott RM, Steichen-Gersdorf E, Sabroe R, Kennedy CT, Mettler G, Beis MJ, Fryer A, Awad IA, Lifton RP (1998) Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. Hum Mol Genet 7(12):1851–1858

    Article  CAS  PubMed  Google Scholar 

  44. Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23(2):189–193

    Article  CAS  PubMed  Google Scholar 

  45. Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP, Plummer NW, Cannella M, Maglione V, Squitieri F, Johnson EW, Rouleau GA, Ptacek L, Marchuk DA (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73(6):1459–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Denier C, Goutagny S, Labauge P, Krivosic V, Arnoult M, Cousin A, Benabid AL, Comoy J, Frerebeau P, Gilbert B, Houtteville JP, Jan M, Lapierre F, Loiseau H, Menei P, Mercier P, Moreau JJ, Nivelon-Chevallier A, Parker F, Redondo AM, Scarabin JM, Tremoulet M, Zerah M, Maciazek J, Tournier-Lasserve E (2004) Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet 74(2):326–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau JJ, Neau JP, Parker F, Tremoulet M, Tournier-Lasserve E (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76(1):42–51

    Article  CAS  PubMed  Google Scholar 

  48. Guclu B, Ozturk AK, Pricola KL, Bilguvar K, Shin D, O’Roak BJ, Gunel M (2005) Mutations in apoptosis-related gene, PDCD10, cause cerebral cavernous malformation 3. Neurosurgery 57(5):1008–1013

    Article  PubMed  Google Scholar 

  49. Liquori CL, Berg MJ, Squitieri F, Ottenbacher M, Sorlie M, Leedom TP, Cannella M, Maglione V, Ptacek L, Johnson EW, Marchuk DA (2006) Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Hum Mutat 27(1):118

    Article  PubMed  Google Scholar 

  50. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277(5):1070–1075

    Article  CAS  PubMed  Google Scholar 

  51. Riant F, Bergametti F, Fournier HD, Chapon F, Michalak-Provost S, Cecillon M, Lejeune P, Hosseini H, Choe C, Orth M, Bernreuther C, Boulday G, Denier C, Labauge P, Tournier-Lasserve E (2013) CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol 4(4):165–172

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, Mikati AG, Zhang L, Austin C, Akers AL, Gallione CJ, Rorrer A, Gunel M, Min W, De Souza JM, Lee C, Marchuk DA, Awad IA (2015) Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17(3):188–196

    Article  CAS  PubMed  Google Scholar 

  53. McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S, De Castro N, Berg MJ, Corcoran DL, Awad IA, Marchuk DA (2014) Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 23(16):4357–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Spiegler S, Rath M, Hoffjan S, Dammann P, Sure U, Pagenstecher A, Strom T, Felbor U (2017) First large genomic inversion in familial cerebral cavernous malformation identified by whole genome sequencing. Neurogenetics 19:55–59

    Article  CAS  PubMed  Google Scholar 

  55. Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, Arnoult M, Maciazek J, Vicaut E, Brunereau L, Tournier-Lasserve E, Societe Francaise de N (2006) Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 60(5):550–556

    Article  PubMed  Google Scholar 

  56. Choquet H, Pawlikowska L, Lawton MT, Kim H (2015) Genetics of cerebral cavernous malformations: current status and future prospects. J Neurosurg Sci 59(3):211–220

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823

    Article  PubMed  Google Scholar 

  58. Gault J, Awad IA, Recksiek P, Shenkar R, Breeze R, Handler M, Kleinschmidt-DeMasters BK (2009) Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. Neurosurgery 65(1):138–144 (discussion 144-5)

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gault J, Shenkar R, Recksiek P, Awad IA (2005) Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke 36(4):872–874

    Article  PubMed  Google Scholar 

  60. Draheim KM, Fisher OS, Boggon TJ, Calderwood DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127(Pt 4):701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA (2009) Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18(5):919–930

    Article  CAS  PubMed  Google Scholar 

  62. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Marchuk DA, Davis GE, Li DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15(2):177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY (2004) Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 131(6):1437–1448

    Article  CAS  PubMed  Google Scholar 

  64. Boulday G, Blecon A, Petit N, Chareyre F, Garcia LA, Niwa-Kawakita M, Giovannini M, Tournier-Lasserve E (2009) Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech 2(3–4):168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 3(116):ra26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guzeloglu-Kayisli O, Kayisli UA, Amankulor NM, Voorhees JR, Gokce O, DiLuna ML, Laurans MS, Luleci G, Gunel M (2004) Krev1 interaction trapped-1/cerebral cavernous malformation-1 protein expression during early angiogenesis. J Neurosurg 100(5 Suppl Pediatrics):481–487

    CAS  PubMed  Google Scholar 

  67. Seker A, Pricola KL, Guclu B, Ozturk AK, Louvi A, Gunel M (2006) CCM2 expression parallels that of CCM1. Stroke 37(2):518–523

    Article  CAS  PubMed  Google Scholar 

  68. Tanriover G, Boylan AJ, Diluna ML, Pricola KL, Louvi A, Gunel M (2008) PDCD10, the gene mutated in cerebral cavernous malformation 3, is expressed in the neurovascular unit. Neurosurgery 62(4):930–938 (discussion 938)

    Article  PubMed  Google Scholar 

  69. Plummer NW, Squire TL, Srinivasan S, Huang E, Zawistowski JS, Matsunami H, Hale LP, Marchuk DA (2006) Neuronal expression of the Ccm2 gene in a new mouse model of cerebral cavernous malformations. Mamm Genome 17(2):119–128

    Article  CAS  PubMed  Google Scholar 

  70. Gunel M, Awad IA, Finberg K, Steinberg GK, Craig HD, Cepeda O, Nelson-Williams C, Lifton RP (1996) Genetic heterogeneity of inherited cerebral cavernous malformation. Neurosurgery 38(6):1265–1271

    CAS  PubMed  Google Scholar 

  71. Labauge P, Laberge S, Brunereau L, Levy C, Tournier-Lasserve E (1998) Hereditary cerebral cavernous angiomas: clinical and genetic features in 57 French families. Societe Francaise de Neurochirurgie. Lancet 352(9144):1892–1897

    Article  CAS  PubMed  Google Scholar 

  72. Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, Spetzler RF (1988) Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med 319(6):343–347

    Article  CAS  PubMed  Google Scholar 

  73. Hayman LA, Evans RA, Ferrell RE, Fahr LM, Ostrow P, Riccardi VM (1982) Familial cavernous angiomas: natural history and genetic study over a 5-year period. Am J Med Genet 11(2):147–160

    Article  CAS  PubMed  Google Scholar 

  74. Gunel M, Awad IA, Finberg K, Anson JA, Steinberg GK, Batjer HH, Kopitnik TA, Morrison L, Giannotta SL, Nelson-Williams C, Lifton RP (1996) A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med 334(15):946–951

    Article  CAS  PubMed  Google Scholar 

  75. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Jones CA, Zhu W, Marchuk DA, Davis GE, Li DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15(2):177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kleaveland B, Zheng X, Liu JJ, Blum Y, Tung JJ, Zou Z, Chen M, Guo L, Lu MM, Zhou D, Kitajewski J, Affolter M, Ginsberg MH, Kahn ML (2009) Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med 15(2):169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chan AC, Drakos SG, Ruiz OE, Smith AC, Gibson CC, Ling J, Passi SF, Stratman AN, Sacharidou A, Revelo MP, Grossmann AH, Diakos NA, Davis GE, Metzstein MM, Whitehead KJ, Li DY (2011) Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J Clin Invest 121(5):1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zheng X, Xu C, Di Lorenzo A, Kleaveland B, Zou Z, Seiler C, Chen M, Cheng L, Xiao J, He J, Pack MA, Sessa WC, Kahn ML (2010) CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest 120(8):2795–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoruk B, Gillers BS, Chi NC, Scott IC (2012) Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 362(2):121–131

    Article  CAS  PubMed  Google Scholar 

  80. Lisowska J, Rodel CJ, Manet S, Miroshnikova YA, Boyault C, Planus E, De Mets R, Lee HH, Destaing O, Mertani H, Boulday G, Tournier-Lasserve E, Balland M, Abdelilah-Seyfried S, Albiges-Rizo C, Faurobert E (2018) Cerebral Cavernous Malformation 1/2 complex controls ROCK1 and ROCK2 complementary functions for endothelial integrity. J Cell Sci 1:ics-216093

    Article  CAS  Google Scholar 

  81. Cunningham K, Uchida Y, O’Donnell E, Claudio E, Li W, Soneji K, Wang H, Mukouyama YS, Siebenlist U (2011) Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations. Hum Mol Genet 20(16):3198–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta SF, Lampugnani MG, Dejana E (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498(7455):492–496

    Article  CAS  PubMed  Google Scholar 

  83. Nishimura S, Mishra-Gorur K, Park J, Surovtseva YV, Sebti SM, Levchenko A, Louvi A, Gunel M (2017) Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci USA 114(21):5503–5508

    Article  CAS  PubMed  Google Scholar 

  84. Zhou HJ, Qin L, Zhang H, Tang W, Ji W, He Y, Liang X, Wang Z, Yuan Q, Vortmeyer A, Toomre D, Fuh G, Yan M, Kluger MS, Wu D, Min W (2016) Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med 22(9):1033–1042

    Article  CAS  Google Scholar 

  85. Louvi A, Chen L, Two AM, Zhang H, Min W, Gunel M (2011) Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci U S A 108(9):3737–3742

    Article  PubMed  PubMed Central  Google Scholar 

  86. Louvi A, Nishimura S, Gunel M (2014) Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration. Development 141(6):1404–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fisher OS, Zhang R, Li X, Murphy JW, Demeler B, Boggon TJ (2013) Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus. FEBS Lett 587(3):272–277

    Article  CAS  PubMed  Google Scholar 

  88. Baranoski JF, Kalani MY, Przybylowski CJ, Zabramski JM (2016) Cerebral cavernous malformations: review of the genetic and protein-protein interactions resulting in disease pathogenesis. Front Surg 3:60

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gingras AR, Puzon-McLaughlin W, Ginsberg MH (2013) The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. J Biol Chem 288(33):23639–23649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zawistowski JS, Serebriiskii IG, Lee MF, Golemis EA, Marchuk DA (2002) KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Hum Mol Genet 11(4):389–396

    Article  CAS  PubMed  Google Scholar 

  91. Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ (2013) Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 49(4):719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE, Horne EA, Dell’Acqua ML, Johnson GL (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5(12):1104–1110

    Article  CAS  PubMed  Google Scholar 

  93. Zawistowski JS, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL, Marchuk DA (2005) CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet 14(17):2521–2531

    Article  CAS  PubMed  Google Scholar 

  94. Li X, Ji W, Zhang R, Folta-Stogniew E, Min W, Boggon TJ (2011) Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). J Biol Chem 286(29):26138–26147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ceccarelli DF, Laister RC, Mulligan VK, Kean MJ, Goudreault M, Scott IC, Derry WB, Chakrabartty A, Gingras AC, Sicheri F (2011) CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization. J Biol Chem 286(28):25056–25064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Draheim KM, Li X, Zhang R, Fisher OS, Villari G, Boggon TJ, Calderwood DA (2015) CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation. J Cell Biol 208(7):987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goudreault M, D’Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras AC (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteom 8(1):157–171

    Article  CAS  Google Scholar 

  98. Kean MJ, Ceccarelli DF, Goudreault M, Sanches M, Tate S, Larsen B, Gibson LC, Derry WB, Scott IC, Pelletier L, Baillie GS, Sicheri F, Gingras AC (2011) Structure-function analysis of core STRIPAK Proteins: a signaling complex implicated in Golgi polarization. J Biol Chem 286(28):25065–25075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lant B, Yu B, Goudreault M, Holmyard D, Knight JD, Xu P, Zhao L, Chin K, Wallace E, Zhen M, Gingras AC, Derry WB (2015) CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat Commun 6:6449

    Article  CAS  PubMed  Google Scholar 

  100. Xu X, Wang X, Ding J, da Wang C (2012) Crystallization and preliminary crystallographic studies of CCM3 in complex with the C-terminal domain of MST4. Acta Crystallogr Sect F Struct Biol Cryst Commun 68(Pt 7):760–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hilder TL, Malone MH, Bencharit S, Colicelli J, Haystead TA, Johnson GL, Wu CC (2007) Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res 6(11):4343–4355

    Article  CAS  PubMed  Google Scholar 

  102. Zhou Z, Rawnsley DR, Goddard LM, Pan W, Cao XJ, Jakus Z, Zheng H, Yang J, Arthur JS, Whitehead KJ, Li D, Zhou B, Garcia BA, Zheng X, Kahn ML (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 32(2):168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang X, Hou Y, Deng K, Zhang Y, Wang DC, Ding J (2015) Structural insights into the molecular recognition between cerebral cavernous malformation 2 and mitogen-activated protein kinase kinase kinase 3. Structure 23(6):1087–1096

    Article  CAS  PubMed  Google Scholar 

  104. Fisher OS, Deng H, Liu D, Zhang Y, Wei R, Deng Y, Zhang F, Louvi A, Turk BE, Boggon TJ, Su B (2015) Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun 6:7937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cullere X, Plovie E, Bennett PM, MacRae CA, Mayadas TN (2015) The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci USA 112(46):14284–14289

    Article  CAS  PubMed  Google Scholar 

  106. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E (2015) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8(1):6–24

    Article  CAS  PubMed Central  Google Scholar 

  107. Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JS, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532(7597):122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bravi L, Malinverno M, Pisati F, Rudini N, Cuttano R, Pallini R, Martini M, Larocca LM, Locatelli M, Levi V, Bertani GA, Dejana E, Lampugnani MG (2016) Endothelial cells lining sporadic cerebral cavernous malformation cavernomas undergo endothelial-to-mesenchymal transition. Stroke 47(3):886–890

    Article  PubMed  Google Scholar 

  109. Cunha SI, Magnusson PU, Dejana E, Lampugnani MG (2017) Deregulated TGF-beta/BMP signaling in vascular malformations. Circ Res 121(8):981–999

    Article  CAS  PubMed  Google Scholar 

  110. Crose LE, Hilder TL, Sciaky N, Johnson GL (2009) Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 284(20):13301–13305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285(16):11760–11764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207(4):881–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA, Marchuk DA (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20(2):211–222

    Article  CAS  PubMed  Google Scholar 

  114. McDonald DA, Shi C, Shenkar R, Stockton RA, Liu F, Ginsberg MH, Marchuk DA, Awad IA (2012) Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43(2):571–574

    Article  CAS  PubMed  Google Scholar 

  115. Faurobert E, Rome C, Lisowska J, Manet-Dupe S, Boulday G, Malbouyres M, Balland M, Bouin AP, Keramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C (2013) CCM1-ICAP-1 complex controls beta1 integrin-dependent endothelial contractility and fibronectin remodeling. J Cell Biol 202(3):545–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Richardson BT, Dibble CF, Borikova AL, Johnson GL (2013) Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling. Biol Chem 394(1):35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bond LM, Sellers JR, McKerracher L (2015) Rho kinase as a target for cerebral vascular disorders. Future Med Chem 7(8):1039–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shenkar R, Shi C, Austin C, Moore T, Lightle R, Cao Y, Zhang L, Wu M, Zeineddine HA, Girard R, McDonald DA, Rorrer A, Gallione C, Pytel P, Liao JK, Marchuk DA, Awad IA (2017) RhoA kinase inhibition with fasudil versus simvastatin in murine models of cerebral cavernous malformations. Stroke 48(1):187–194

    Article  CAS  PubMed  Google Scholar 

  119. Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, Walker AE, Goitre L, Delle Monache S, Retta SF, Shiu YT, Grossmann AH, Thomas KR, Donato AJ, Lesniewski LA, Whitehead KJ, Li DY (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131(3):289–299

    Article  CAS  PubMed  Google Scholar 

  120. Bravi L, Rudini N, Cuttano R, Giampietro C, Maddaluno L, Ferrarini L, Adams RH, Corada M, Boulday G, Tournier-Lasserve E, Dejana E, Lampugnani MG (2015) Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci USA 112(27):8421–8426

    Article  CAS  PubMed  Google Scholar 

  121. Fogelholm R, Hernesniemi J, Vapalahti M (1993) Impact of early surgery on outcome after aneurysmal subarachnoid hemorrhage. A population-based study. Stroke 24(11):1649–1654

    Article  CAS  PubMed  Google Scholar 

  122. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ (2009) Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 8(7):635–642

    Article  PubMed  Google Scholar 

  123. Connolly ES Jr, Choudhri TF, Mack WJ, Mocco J, Spinks TJ, Slosberg J, Lin T, Huang J, Solomon RA (2001) Influence of smoking, hypertension, and sex on the phenotypic expression of familial intracranial aneurysms in siblings. Neurosurgery 48(1):64–68 (discussion 68-9)

    PubMed  Google Scholar 

  124. Ishibashi T, Murayama Y, Urashima M, Saguchi T, Ebara M, Arakawa H, Irie K, Takao H, Abe T (2009) Unruptured intracranial aneurysms: incidence of rupture and risk factors. Stroke 40(1):313–316

    Article  PubMed  Google Scholar 

  125. Chambers WR, Harper BF Jr, Simpson JR (1954) Familial incidence of congenital aneurysms of cerebral arteries: report of cases of ruptured aneurysms in father and son. J Am Med Assoc 155(4):358–359

    Article  CAS  PubMed  Google Scholar 

  126. Graf CJ (1966) Familial intracranial aneurysms. J Neurosurg 25(3):304–308

    Article  CAS  PubMed  Google Scholar 

  127. Beumont PJ (1968) The familial occurrence of berry aneurysm. J Neurol Neurosurg Psychiatry 31(4):399–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schievink WI, Schaid DJ, Michels VV, Piepgras DG (1995) Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg 83(3):426–429

    Article  CAS  PubMed  Google Scholar 

  129. Graf S, Schischma A, Eberhardt KE, Istel R, Stiasny B, Schulze BD (2002) Intracranial aneurysms and dolichoectasia in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 17(5):819–823

    Article  PubMed  Google Scholar 

  130. Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH (2014) Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med 16(12):881–888

    Article  CAS  PubMed  Google Scholar 

  131. O’Connell D, Kaliaperumal C, Fanning N, Wyse G, Kaar G (2012) Superior cerebellar aneurysm causing subarachnoid haemorrhage in a 17-year-old with alagille syndrome. Br J Neurosurg 26(2):287–289

    Article  PubMed  Google Scholar 

  132. Schievink WI, Riedinger M, Maya MM (2005) Frequency of incidental intracranial aneurysms in neurofibromatosis type 1. Am J Med Genet A 134A(1):45–48

    Article  PubMed  Google Scholar 

  133. Onda H, Kasuya H, Yoneyama T, Takakura K, Hori T, Takeda J, Nakajima T, Inoue I (2001) Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet 69(4):804–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Peters DG, Kassam AB, Feingold E, Heidrich-O’Hare E, Yonas H, Ferrell RE, Brufsky A (2001) Molecular anatomy of an intracranial aneurysm: coordinated expression of genes involved in wound healing and tissue remodeling. Stroke 32(4):1036–1042

    Article  CAS  PubMed  Google Scholar 

  135. Farnham JM, Camp NJ, Neuhausen SL, Tsuruda J, Parker D, MacDonald J, Cannon-Albright LA (2004) Confirmation of chromosome 7q11 locus for predisposition to intracranial aneurysm. Hum Genet 114(3):250–255

    Article  PubMed  Google Scholar 

  136. Nahed BV, Seker A, Guclu B, Ozturk AK, Finberg K, Hawkins AA, DiLuna ML, State M, Lifton RP, Gunel M (2005) Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. Am J Hum Genet 76(1):172–179

    Article  CAS  PubMed  Google Scholar 

  137. Ozturk AK, Nahed BV, Bydon M, Bilguvar K, Goksu E, Bademci G, Guclu B, Johnson MH, Amar A, Lifton RP, Gunel M (2006) Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke 37(4):1021–1027

    Article  CAS  PubMed  Google Scholar 

  138. Ruigrok YM, Wijmenga C, Rinkel GJ, van’t Slot R, Baas F, Wolfs M, Westerveld A, Roos YB (2008) Genomewide linkage in a large Dutch family with intracranial aneurysms: replication of 2 loci for intracranial aneurysms to chromosome 1p36.11-p36.13 and Xp22.2-p22.32. Stroke 39(4):1096–1102

    Article  CAS  PubMed  Google Scholar 

  139. Bilguvar K, Yasuno K, Niemela M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM, van den Berg LH, Mane S, Mason CE, Choi M, Gaal E, Bayri Y, Kolb L, Arlier Z, Ravuri S, Ronkainen A, Tajima A, Laakso A, Hata A, Kasuya H, Koivisto T, Rinne J, Ohman J, Breteler MM, Wijmenga C, State MW, Rinkel GJ, Hernesniemi J, Jaaskelainen JE, Palotie A, Inoue I, Lifton RP, Gunel M (2008) Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 40(12):1472–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B, Auburger G, Simon M, Krex D, Arlier Z, Nayak N, Ruigrok YM, Niemela M, Tajima A, von und zu Fraunberg M, Doczi T, Wirjatijasa F, Hata A, Blasco J, Oszvald A, Kasuya H, Zilani G, Schoch B, Singh P, Stuer C, Risselada R, Beck J, Sola T, Ricciardi F, Aromaa A, Illig T, Schreiber S, van Duijn CM, van den Berg LH, Perret C, Proust C, Roder C, Ozturk AK, Gaal E, Berg D, Geisen C, Friedrich CM, Summers P, Frangi AF, State MW, Wichmann HE, Breteler MM, Wijmenga C, Mane S, Peltonen L, Elio V, Sturkenboom MC, Lawford P, Byrne J, Macho J, Sandalcioglu EI, Meyer B, Raabe A, Steinmetz H, Rufenacht D, Jaaskelainen JE, Hernesniemi J, Rinkel GJ, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, Gunel M (2010) Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 42(5):420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yasuno K, Bakircioglu M, Low SK, Bilguvar K, Gaal E, Ruigrok YM, Niemela M, Hata A, Bijlenga P, Kasuya H, Jaaskelainen JE, Krex D, Auburger G, Simon M, Krischek B, Ozturk AK, Mane S, Rinkel GJ, Steinmetz H, Hernesniemi J, Schaller K, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, Gunel M (2011) Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci USA 108(49):19707–19712

    Article  PubMed  Google Scholar 

  142. Foroud T, Koller DL, Lai D, Sauerbeck L, Anderson C, Ko N, Deka R, Mosley TH, Fornage M, Woo D, Moomaw CJ, Hornung R, Huston J, Meissner I, Bailey-Wilson JE, Langefeld C, Rouleau G, Connolly ES, Worrall BB, Kleindorfer D, Flaherty ML, Martini S, Mackey J, De Los Rios La Rosa F, Brown F, Broderick JP, Investigators FIAS (2012) Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke 43(11):2846–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Joshi G, Pradhan S, Mittal B (2011) Vascular gene polymorphisms (EDNRA -231 G > A and APOE HhaI) and risk for migraine. DNA Cell Biol 30(8):577–584

    Article  CAS  PubMed  Google Scholar 

  144. Lee S, Kim IK, Ahn JS, Woo DC, Kim ST, Song S, Koh GY, Kim HS, Jeon BH, Kim I (2015) Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation 131(11):995–1005

    Article  CAS  PubMed  Google Scholar 

  145. Leeper NJ, Raiesdana A, Kojima Y, Kundu RK, Cheng H, Maegdefessel L, Toh R, Ahn GO, Ali ZA, Anderson DR, Miller CL, Roberts SC, Spin JM, de Almeida PE, Wu JC, Xu B, Cheng K, Quertermous M, Kundu S, Kortekaas KE, Berzin E, Downing KP, Dalman RL, Tsao PS, Schadt EE, Owens GK, Quertermous T (2013) Loss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formation. Arterioscler Thromb Vasc Biol 33(1):e1–e10

    Article  CAS  PubMed  Google Scholar 

  146. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA, Genomes Project, C (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073

    Article  CAS  PubMed  Google Scholar 

  147. Suzuki J, Takaku A (1969) Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol 20(3):288–299

    Article  CAS  PubMed  Google Scholar 

  148. Khan N, Takagi Y, Yonekawa Y (2017) Adult Moyamoya disease. In: Winn HR (ed) Youmans and Winn neurological surgery. Elsevier, Amsterdam, pp 3166–3174

    Google Scholar 

  149. Smith ER, Scott RM (2017) Moyamoya disease. In: Winn HR (ed) Youmans and Winn neurological surgery. Elsevier, Amsterdam, pp 1766–1772

    Google Scholar 

  150. Ahn IM, Park DH, Hann HJ, Kim KH, Kim HJ, Ahn HS (2014) Incidence, prevalence, and survival of moyamoya disease in Korea: a nationwide, population-based study. Stroke 45(4):1090–1095

    Article  PubMed  Google Scholar 

  151. Scott RM, Smith ER (2009) Moyamoya disease and moyamoya syndrome. N Engl J Med 360(12):1226–1237

    Article  CAS  PubMed  Google Scholar 

  152. Kraemer M, Heienbrok W, Berlit P (2008) Moyamoya disease in Europeans. Stroke 39(12):3193–3200

    Article  PubMed  Google Scholar 

  153. Suzuki J, Kodama N (1983) Moyamoya disease—a review. Stroke 14(1):104–109

    Article  CAS  PubMed  Google Scholar 

  154. Graham JF, Matoba A (1997) A survey of moyamoya disease in Hawaii. Clin Neurol Neurosurg 99(Suppl 2):S31–S35

    Article  PubMed  Google Scholar 

  155. Yamauchi T, Houkin K, Tada M, Abe H (1997) Familial occurrence of moyamoya disease. Clin Neurol Neurosurg 99(Suppl 2):S162–S167

    Article  PubMed  Google Scholar 

  156. Ikeda E (1991) Systemic vascular changes in spontaneous occlusion of the circle of Willis. Stroke 22(11):1358–1362

    Article  CAS  PubMed  Google Scholar 

  157. Mineharu Y, Takenaka K, Yamakawa H, Inoue K, Ikeda H, Kikuta KI, Takagi Y, Nozaki K, Hashimoto N, Koizumi A (2006) Inheritance pattern of familial moyamoya disease: autosomal dominant mode and genomic imprinting. J Neurol Neurosurg Psychiatry 77(9):1025–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mineharu Y, Liu W, Inoue K, Matsuura N, Inoue S, Takenaka K, Ikeda H, Houkin K, Takagi Y, Kikuta K, Nozaki K, Hashimoto N, Koizumi A (2008) Autosomal dominant moyamoya disease maps to chromosome 17q25.3. Neurology 70(24 Pt 2):2357–2363

    Article  CAS  Google Scholar 

  159. Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, Kikuchi A, Kanno J, Niihori T, Ono M, Ishii N, Owada Y, Fujimura M, Mashimo Y, Suzuki Y, Hata A, Tsuchiya S, Tominaga T, Matsubara Y, Kure S (2011) A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet 56(1):34–40

    Article  CAS  PubMed  Google Scholar 

  160. Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, Hashikata H, Matsuura N, Yamazaki S, Toyoda A, Kikuta K, Takagi Y, Harada KH, Fujiyama A, Herzig R, Krischek B, Zou L, Kim JE, Kitakaze M, Miyamoto S, Nagata K, Hashimoto N, Koizumi A (2011) Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One 6(7):e22542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Moteki Y, Onda H, Kasuya H, Yoneyama T, Okada Y, Hirota K, Mukawa M, Nariai T, Mitani S, Akagawa H (2015) Systematic validation of RNF213 coding variants in Japanese patients with moyamoya disease. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.001862

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kim EH, Yum MS, Ra YS, Park JB, Ahn JS, Kim GH, Goo HW, Ko TS, Yoo HW (2016) Importance of RNF213 polymorphism on clinical features and long-term outcome in moyamoya disease. J Neurosurg 124(5):1221–1227

    Article  CAS  PubMed  Google Scholar 

  163. Raso A , Biassoni R, Mascelli S, Nozza P, Ugolotti E, DI Marco E, DE Marco P, Merello E, Cama A, Pavanello M, Capra V (2016) Moyamoya vasculopathy shows a genetic mutational gradient decreasing from East to West. J Neurosurg Sci

  164. Ohkubo K, Sakai Y, Inoue H, Akamine S, Ishizaki Y, Matsushita Y, Sanefuji M, Torisu H, Ihara K, Sardiello M, Hara T (2015) Moyamoya disease susceptibility gene RNF213 links inflammatory and angiogenic signals in endothelial cells. Sci Rep 5:13191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fukushima H, Takenouchi T, Kosaki K (2016) Homozygosity for moyamoya disease risk allele leads to moyamoya disease with extracranial systemic and pulmonary vasculopathy. Am J Med Genet A 170(9):2453–2456

    Article  CAS  PubMed  Google Scholar 

  166. Sonobe S, Fujimura M, Niizuma K, Nishijima Y, Ito A, Shimizu H, Kikuchi A, Arai-Ichinoi N, Kure S, Tominaga T (2014) Temporal profile of the vascular anatomy evaluated by 9.4-T magnetic resonance angiography and histopathological analysis in mice lacking RNF213: a susceptibility gene for moyamoya disease. Brain Res 1552:64–71

    Article  CAS  PubMed  Google Scholar 

  167. Herve D, Philippi A, Belbouab R, Zerah M, Chabrier S, Collardeau-Frachon S, Bergametti F, Essongue A, Berrou E, Krivosic V, Sainte-Rose C, Houdart E, Adam F, Billiemaz K, Lebret M, Roman S, Passemard S, Boulday G, Delaforge A, Guey S, Dray X, Chabriat H, Brouckaert P, Bryckaert M, Tournier-Lasserve E (2014) Loss of alpha1beta1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am J Hum Genet 94(3):385–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zabel U, Weeger M, La M, Schmidt HH (1998) Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochem J 335(Pt 1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Herve D, Touraine P, Verloes A, Miskinyte S, Krivosic V, Logeart D, Alili N, Laredo JD, Gaudric A, Houdart E, Metzger JP, Tournier-Lasserve E, Woimant F (2010) A hereditary moyamoya syndrome with multisystemic manifestations. Neurology 75(3):259–264

    Article  CAS  PubMed  Google Scholar 

  170. Miskinyte S, Butler MG, Herve D, Sarret C, Nicolino M, Petralia JD, Bergametti F, Arnould M, Pham VN, Gore AV, Spengos K, Gazal S, Woimant F, Steinberg GK, Weinstein BM, Tournier-Lasserve E (2011) Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am J Hum Genet 88(6):718–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Inoue TK, Ikezaki K, Sasazuki T, Matsushima T, Fukui M (1997) Analysis of class II genes of human leukocyte antigen in patients with moyamoya disease. Clin Neurol Neurosurg 99(Suppl 2):S234–S237

    Article  PubMed  Google Scholar 

  172. Inoue TK, Ikezaki K, Sasazuki T, Matsushima T, Fukui M (2000) Linkage analysis of moyamoya disease on chromosome 6. J Child Neurol 15(3):179–182

    Article  CAS  PubMed  Google Scholar 

  173. Han H, Pyo CW, Yoo DS, Huh PW, Cho KS, Kim DS (2003) Associations of Moyamoya patients with HLA class I and class II alleles in the Korean population. J Korean Med Sci 18(6):876–880

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sakurai K, Horiuchi Y, Ikeda H, Ikezaki K, Yoshimoto T, Fukui M, Arinami T (2004) A novel susceptibility locus for moyamoya disease on chromosome 8q23. J Hum Genet 49(5):278–281

    Article  CAS  PubMed  Google Scholar 

  175. Roder C, Peters V, Kasuya H, Nishizawa T, Takehara Y, Berg D, Schulte C, Khan N, Tatagiba M, Krischek B (2010) Polymorphisms in TGFB1 and PDGFRB are associated with Moyamoya disease in European patients. Acta Neurochir (Wien) 152(12):2153–2160

    Article  Google Scholar 

  176. Guey S, Grangeon L, Brunelle F, Bergametti F, Amiel J, Lyonnet S, Delaforge A, Arnould M, Desnous B, Bellesme C, Herve D, Schwitalla JC, Kraemer M, Tournier-Lasserve E, Kossorotoff M (2017) De novo mutations in CBL causing early-onset paediatric moyamoya angiopathy. J Med Genet 54(8):550–557

    Article  CAS  PubMed  Google Scholar 

  177. Mukawa M, Nariai T, Onda H, Yoneyama T, Aihara Y, Hirota K, Kudo T, Sumita K, Maehara T, Kawamata T, Kasuya H, Akagawa H (2017) Exome sequencing identified CCER2 as a novel candidate gene for Moyamoya disease. J Stroke Cerebrovasc Dis 26(1):150–161

    Article  PubMed  Google Scholar 

  178. Hamauchi S, Shichinohe H, Uchino H, Yamaguchi S, Nakayama N, Kazumata K, Osanai T, Abumiya T, Houkin K, Era T (2016) Cellular functions and gene and protein expression profiles in endothelial cells derived from Moyamoya disease-specific iPS Cells. PLoS One 11(9):e0163561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang W, Gao F, Zhao Z, Wang H, Zhang L, Zhang D, Zhang Y, Lan Q, Wang J, Zhao J (2017) Integrated analysis of LncRNA-mRNA co-expression profiles in patients with moyamoya disease. Sci Rep 7:42421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gao F, Yu L, Zhang D, Zhang Y, Wang R, Zhao J (2016) Long noncoding RNAs and their regulatory network: potential therapeutic targets for adult moyamoya disease. World Neurosurg 93:111–119

    Article  PubMed  Google Scholar 

  181. Vinters HV, Zarow C, Borys E, Whitman JD, Tung S, Ellis WG, Zheng L, Chui HC (2018) Review: vascular dementia: clinicopathologic and genetic considerations. Neuropathol Appl Neurobiol 44(3):247–266

    Article  CAS  PubMed  Google Scholar 

  182. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383(6602):707–710

    Article  CAS  PubMed  Google Scholar 

  183. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360(17):1729–1739

    Article  CAS  PubMed  Google Scholar 

  184. Richards A, van den Maagdenberg AM, Jen JC, Kavanagh D, Bertram P, Spitzer D, Liszewski MK, Barilla-Labarca ML, Terwindt GM, Kasai Y, McLellan M, Grand MG, Vanmolkot KR, de Vries B, Wan J, Kane MJ, Mamsa H, Schafer R, Stam AH, Haan J, de Jong PT, Storimans CW, van Schooneveld MJ, Oosterhuis JA, Gschwendter A, Dichgans M, Kotschet KE, Hodgkinson S, Hardy TA, Delatycki MB, Hajj-Ali RA, Kothari PH, Nelson SF, Frants RR, Baloh RW, Ferrari MD, Atkinson JP (2007) C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39(9):1068–1070

    Article  CAS  PubMed  Google Scholar 

  185. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SW (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354(14):1489–1496

    Article  CAS  PubMed  Google Scholar 

  186. Gilbert JJ, Vinters HV (1983) Cerebral amyloid angiopathy: incidence and complications in the aging brain. Cerebral hemorrhage. Stroke 14(6):915–923

    Article  CAS  PubMed  Google Scholar 

  187. Vinters HV, Gilbert JJ (1983) Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 14(6):924–928

    Article  CAS  PubMed  Google Scholar 

  188. Kolar GR, Kothari PH, Khanlou N, Jen JC, Schmidt RE, Vinters HV (2014) Neuropathology and genetics of cerebroretinal vasculopathies. Brain Pathol 24(5):510–518

    Article  CAS  PubMed  Google Scholar 

  189. Sourander P, Walinder J (1977) Hereditary multi-infarct dementia. Morphological and clinical studies of a new disease. Acta Neuropathol 39(3):247–254

    Article  CAS  PubMed  Google Scholar 

  190. Sourander P, Walinder J (1977) Hereditary multi-infarct dementia. Lancet 1(8019):1015

    Article  CAS  PubMed  Google Scholar 

  191. Van Bogaert L (1955) Encephalopathie sous-corticale progressive (Binswanger): an evolution rapide chez deux soeurs. Med Hellen 24:961–972

    Google Scholar 

  192. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG (2009) Cadasil. Lancet Neurol 8(7):643–653

    Article  PubMed  Google Scholar 

  193. Moreton FC, Razvi SS, Davidson R, Muir KW (2014) Changing clinical patterns and increasing prevalence in CADASIL. Acta Neurol Scand 130(3):197–203

    Article  CAS  PubMed  Google Scholar 

  194. Tikka S, Baumann M, Siitonen M, Pasanen P, Poyhonen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H (2014) CADASIL and CARASIL. Brain Pathol 24(5):525–544

    Article  CAS  PubMed  Google Scholar 

  195. Tournier-Lasserve E, Joutel A, Melki J, Weissenbach J, Lathrop GM, Chabriat H, Mas JL, Cabanis EA, Baudrimont M, Maciazek J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3(3):256–259

    Article  CAS  PubMed  Google Scholar 

  196. Adib-Samii P, Brice G, Martin RJ, Markus HS (2010) Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke 41(4):630–634

    Article  PubMed  Google Scholar 

  197. Opherk C, Peters N, Herzog J, Luedtke R, Dichgans M (2004) Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain 127(Pt 11):2533–2539

    Article  PubMed  Google Scholar 

  198. Rutten JW, Dauwerse HG, Gravesteijn G, van Belzen MJ, van der Grond J, Polke JM, Bernal-Quiros M, Lesnik Oberstein SA (2016) Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol 3(11):844–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Narayan SK, Gorman G, Kalaria RN, Ford GA, Chinnery PF (2012) The minimum prevalence of CADASIL in northeast England. Neurology 78(13):1025–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Razvi SS, Davidson R, Bone I, Muir KW (2005) The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 76(5):739–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Joutel A, Dodick DD, Parisi JE, Cecillon M, Tournier-Lasserve E, Bousser MG (2000) De novo mutation in the Notch3 gene causing CADASIL. Ann Neurol 47(3):388–391

    Article  CAS  PubMed  Google Scholar 

  202. Coto E, Menendez M, Navarro R, Garcia-Castro M, Alvarez V (2006) A new de novo Notch3 mutation causing CADASIL. Eur J Neurol 13(6):628–631

    Article  CAS  PubMed  Google Scholar 

  203. Tuominen S, Juvonen V, Amberla K, Jolma T, Rinne JO, Tuisku S, Kurki T, Marttila R, Poyhonen M, Savontaus ML, Viitanen M, Kalimo H (2001) Phenotype of a homozygous CADASIL patient in comparison to 9 age-matched heterozygous patients with the same R133C Notch3 mutation. Stroke 32(8):1767–1774

    Article  CAS  PubMed  Google Scholar 

  204. Liem MK, Lesnik Oberstein SA, Vollebregt MJ, Middelkoop HA, van der Grond J, Helderman-van den Enden AT (2008) Homozygosity for a NOTCH3 mutation in a 65-year-old CADASIL patient with mild symptoms: a family report. J Neurol 255(12):1978–1980

    Article  PubMed  Google Scholar 

  205. Ragno M, Pianese L, Morroni M, Cacchio G, Manca A, Di Marzio F, Silvestri S, Miceli C, Scarcella M, Onofrj M, Trojano L (2013) “CADASIL coma” in an Italian homozygous CADASIL patient: comparison with clinical and MRI findings in age-matched heterozygous patients with the same G528C NOTCH3 mutation. Neurol Sci 34(11):1947–1953

    Article  PubMed  Google Scholar 

  206. Soong BW, Liao YC, Tu PH, Tsai PC, Lee IH, Chung CP, Lee YC (2013) A homozygous NOTCH3 mutation p.R544C and a heterozygous TREX1 variant p.C99MfsX3 in a family with hereditary small vessel disease of the brain. J Chin Med Assoc 76(6):319–324

    Article  CAS  PubMed  Google Scholar 

  207. Vinciguerra C, Rufa A, Bianchi S, Sperduto A, De Santis M, Malandrini A, Dotti MT, Federico A (2014) Homozygosity and severity of phenotypic presentation in a CADASIL family. Neurol Sci 35(1):91–93

    Article  PubMed  Google Scholar 

  208. Yamamoto Y, Craggs L, Baumann M, Kalimo H, Kalaria RN (2011) Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol 37(1):94–113

    Article  CAS  PubMed  Google Scholar 

  209. Fouillade C, Monet-Lepretre M, Baron-Menguy C, Joutel A (2012) Notch signaling in smooth muscle cells during development and disease. Cardiovasc Res 95:138–146

    Article  CAS  PubMed  Google Scholar 

  210. Dziewulska D, Lewandowska E (2012) Pericytes as a new target for pathological processes in CADASIL. Neuropathology 32:515–521

    Article  PubMed  Google Scholar 

  211. Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N (2015) Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 78(6):887–900

    Article  CAS  PubMed  Google Scholar 

  212. Baudrimont M, Dubas F, Joutel A, Tournier-Lasserve E, Bousser MG (1993) Autosomal dominant leukoencephalopathy and subcortical ischemic stroke. A clinicopathological study. Stroke 24(1):122–125

    Article  CAS  PubMed  Google Scholar 

  213. Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo JP, Vermersch P, Leys D (1995) Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol (Berl) 89(6):500–512

    Article  CAS  Google Scholar 

  214. Tikka S, Mykkanen K, Ruchoux MM, Bergholm R, Junna M, Poyhonen M, Yki-Jarvinen H, Joutel A, Viitanen M, Baumann M, Kalimo H (2009) Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain J Neurol 132(Pt 4):933–939

    Article  Google Scholar 

  215. Lewandowska E, Dziewulska D, Parys M, Pasennik E (2011) Ultrastructure of granular osmiophilic material deposits (GOM) in arterioles of CADASIL patients. Folia Neuropathol 49(3):174–180

    PubMed  Google Scholar 

  216. Ishiko A, Shimizu A, Nagata E, Takahashi K, Tabira T, Suzuki N (2006) Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol 112(3):333–339

    Article  CAS  PubMed  Google Scholar 

  217. Yamamoto Y, Craggs LJ, Watanabe A, Booth T, Attems J, Low RW, Oakley AE, Kalaria RN (2013) Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL. J Neuropathol Exp Neurol 72(5):416–431

    Article  CAS  PubMed  Google Scholar 

  218. Monet-Lepretre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, Dussaule C, Cognat E, Vinh J, Joutel A (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136(Pt 6):1830–1845

    Article  PubMed  PubMed Central  Google Scholar 

  219. Arboleda-Velasquez JF, Manent J, Lee JH, Tikka S, Ospina C, Vanderburg CR, Frosch MP, Rodriguez-Falcon M, Villen J, Gygi S, Lopera F, Kalimo H, Moskowitz MA, Ayata C, Louvi A, Artavanis-Tsakonas S (2011) Hypomorphic notch 3 alleles link notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci USA 108(21):E128–E135

    Article  PubMed  Google Scholar 

  220. Kast J, Hanecker P, Beaufort N, Giese A, Joutel A, Dichgans M, Opherk C, Haffner C (2014) Sequestration of latent TGF-beta binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun 2:96

    Article  PubMed  PubMed Central  Google Scholar 

  221. Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126(Pt 10):2135–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssiere C, Cruaud C, Maciazek J, Weissenbach J, Bousser MG, Bach JF, Tournier-Lasserve E (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350(9090):1511–1515

    Article  CAS  PubMed  Google Scholar 

  223. Mizuno T, Muranishi M, Torugun T, Tango H, Nagakane Y, Kudeken T, Kawase Y, Kawabe K, Oshima F, Yaoi T, Itoh K, Fushiki S, Nakagawa M (2008) Two Japanese CADASIL families exhibiting Notch3 mutation R75P not involving cysteine residue. Intern Med 47(23):2067–2072

    Article  PubMed  Google Scholar 

  224. Muino E, Gallego-Fabrega C, Cullell N, Carrera C, Torres N, Krupinski J, Roquer J, Montaner J, Fernandez-Cadenas I (2017) Systematic review of cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL. Int J Mol Sci. https://doi.org/10.3390/ijms18091964

    Article  PubMed  PubMed Central  Google Scholar 

  225. Lundkvist J, Zhu S, Hansson EM, Schweinhardt P, Miao Q, Beatus P, Dannaeus K, Karlstrom H, Johansson CB, Viitanen M, Rozell B, Spenger C, Mohammed A, Kalimo H, Lendahl U (2005) Mice carrying a R142C Notch 3 knock-in mutation do not develop a CADASIL-like phenotype. Genesis 41(1):13–22

    Article  CAS  PubMed  Google Scholar 

  226. Wallays G, Nuyens D, Silasi-Mansat R, Souffreau J, Callaerts-Vegh Z, Van Nuffelen A, Moons L, D’Hooge R, Lupu F, Carmeliet P, Collen D, Dewerchin M (2011) Notch3 Arg170Cys knock-in mice display pathologic and clinical features of the neurovascular disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Arterioscler Thromb Vasc Biol 31(12):2881–2888

    Article  CAS  PubMed  Google Scholar 

  227. Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P, Hubner N (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Investig 120(2):433–445

    Article  CAS  PubMed  Google Scholar 

  228. Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, Gridley T, Tournier-Lasserve E, Cohen-Tannoudji M, Joutel A (2007) The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet 16(8):982–992

    Article  CAS  PubMed  Google Scholar 

  229. Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, Tournier-Lasserve E, Cohen-Tannoudji M, Chabriat H, Joutel A (2009) Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain J Neurol 132(Pt 6):1601–1612

    Article  Google Scholar 

  230. Machuca-Parra AI, Bigger-Allen AA, Sanchez AV, Boutabla A, Cardona-Velez J, Amarnani D, Saint-Geniez M, Siebel CW, Kim LA, D’Amore PA, Arboleda-Velasquez JF (2017) Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL. J Exp Med 214(8):2271–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Fukutake T (2011) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 20(2):85–93

    Article  PubMed  Google Scholar 

  232. Nozaki H, Nishizawa M, Onodera O (2014) Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 45(11):3447–3453

    Article  PubMed  Google Scholar 

  233. Verdura E, Herve D, Scharrer E, Amador Mdel M, Guyant-Marechal L, Philippi A, Corlobe A, Bergametti F, Gazal S, Prieto-Morin C, Beaufort N, Le Bail B, Viakhireva I, Dichgans M, Chabriat H, Haffner C, Tournier-Lasserve E (2015) Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain 138(Pt 8):2347–2358

    Article  PubMed  Google Scholar 

  234. Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18(2):311–324

    CAS  PubMed  Google Scholar 

  235. Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, Holton JL (2003) Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol 62(9):885–898

    Article  CAS  PubMed  Google Scholar 

  236. Biffi A, Greenberg SM (2011) Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 7(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  237. Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy in the elderly. Ann Neurol 70(6):871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA (2015) Cerebral amyloid angiopathy and its co-occurrence with Alzheimer’s disease and other cerebrovascular neuropathologic changes. Neurobiol Aging 36(10):2702–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Smith EE (2018) Cerebral amyloid angiopathy as a cause of neurodegeneration. J Neurochem 144(5):651–658

    Article  CAS  PubMed  Google Scholar 

  240. Vinters HV (2015) Emerging concepts in Alzheimer’s disease. Annu Rev Pathol 10:291–319

    Article  CAS  PubMed  Google Scholar 

  241. Greenberg SM, Vonsattel JP (1997) Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke 28(7):1418–1422

    Article  CAS  PubMed  Google Scholar 

  242. Nicoll JA, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller RO (2004) Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer’s disease. Pro-CAA position statement. Neurobiol Aging 25(5):589–597 (discussion 603-4)

    Article  CAS  PubMed  Google Scholar 

  243. Chalmers K, Wilcock GK, Love S (2003) APOE epsilon 4 influences the pathological phenotype of Alzheimer’s disease by favouring cerebrovascular over parenchymal accumulation of A beta protein. Neuropathol Appl Neurobiol 29(3):231–238

    Article  CAS  PubMed  Google Scholar 

  244. Premkumar DR, Cohen DL, Hedera P, Friedland RP, Kalaria RN (1996) Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease. Am J Pathol 148(6):2083–2095

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38(1):24–26

    Article  CAS  PubMed  Google Scholar 

  246. Revesz T, Holton JL, Lashley T, Plant G, Frangione B, Rostagno A, Ghiso J (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118(1):115–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. De Jonghe C, Zehr C, Yager D, Prada CM, Younkin S, Hendriks L, Van Broeckhoven C, Eckman CB (1998) Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol Dis 5(4):281–286

    Article  PubMed  Google Scholar 

  248. Basun H, Bogdanovic N, Ingelsson M, Almkvist O, Naslund J, Axelman K, Bird TD, Nochlin D, Schellenberg GD, Wahlund LO, Lannfelt L (2008) Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. Arch Neurol 65(4):499–505

    Article  PubMed  PubMed Central  Google Scholar 

  249. Ghiso J, Jensson O, Frangione B (1986) Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of gamma-trace basic protein (cystatin C). Proc Natl Acad Sci USA 83(9):2974–2978

    Article  CAS  PubMed  Google Scholar 

  250. Brett M, Persey MR, Reilly MM, Revesz T, Booth DR, Booth SE, Hawkins PN, Pepys MB, Morgan-Hughes JA (1999) Transthyretin Leu12Pro is associated with systemic, neuropathic and leptomeningeal amyloidosis. Brain 122(Pt 2):183–190

    Article  PubMed  Google Scholar 

  251. Ghiso J, Haltia M, Prelli F, Novello J, Frangione B (1990) Gelsolin variant (Asn-187) in familial amyloidosis, Finnish type. Biochem J 272(3):827–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16(1):40–54

    Article  CAS  PubMed  Google Scholar 

  253. Vidal R, Barbeito AG, Miravalle L, Ghetti B (2009) Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol 19(1):58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Stam AH, Kothari PH, Shaikh A, Gschwendter A, Jen JC, Hodgkinson S, Hardy TA, Hayes M, Kempster PA, Kotschet KE, Bajema IM, van Duinen SG, Maat-Schieman MLC, de Jong P, de Smet MD, de Wolff-Rouendaal D, Dijkman G, Pelzer N, Kolar GR, Schmidt RE, Lacey J, Joseph D, Fintak DR, Grand MG, Brunt EM, Liapis H, Hajj-Ali RA, Kruit MC, van Buchem MA, Dichgans M, Frants RR, van den Maagdenberg A, Haan J, Baloh RW, Atkinson JP, Terwindt GM, Ferrari MD (2016) Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain 139(11):2909–2922

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Murat Gunel, Charles Matouk, Branden Cord (Department of Neurosurgery, Yale School of Medicine) and Francisco Lopera (University of Antioquia, Colombia) for sharing MR and CT-angiography images and the two anonymous reviewers for suggestions. P.K. was supported by the German Academic Scholarship Foundation. Work in the Louvi laboratory is supported by the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeliki Louvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karschnia, P., Nishimura, S. & Louvi, A. Cerebrovascular disorders associated with genetic lesions. Cell. Mol. Life Sci. 76, 283–300 (2019). https://doi.org/10.1007/s00018-018-2934-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2934-5

Keywords

Navigation