Skip to main content

Advertisement

Log in

Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The organization of actin filaments into a wide range of subcellular structures is a defining feature of cell shape and dynamics, important for tissue development and homeostasis. Nervous system function requires morphological and functional plasticity of neurons and glial cells, which is largely determined by the dynamic reorganization of the actin cytoskeleton in response to intrinsic and extracellular signals. Oligodendrocytes are specialized glia that extend multiple actin-based protrusions to form the multilayered myelin membrane that spirally wraps around axons, increasing conduction speed and promoting long-term axonal integrity. Myelination is a remarkable biological paradigm in development, and maintenance of myelin is essential for a healthy adult nervous system. In this review, we discuss how structure and dynamics of the actin cytoskeleton is a defining feature of myelinating oligodendrocytes’ biology and function. We also review “old and new” concepts to reflect on the potential role of the cytoskeleton in balancing life and death of myelin membranes and oligodendrocytes in the aging central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kevenaar JT, Hoogenraad CC (2015) The axonal cytoskeleton: from organization to function. Front Mol Neurosci 8:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kachar B, Behar T, Dubois-Dalcq M (1986) Cell shape and motility of oligodendrocytes cultured without neurons. Cell Tissue Res 244:27–38

    Article  CAS  PubMed  Google Scholar 

  3. Wilson R, Brophy PJ (1989) Role for the oligodendrocyte cytoskeleton in myelination. J Neurosci Res 22:439–448

    Article  CAS  PubMed  Google Scholar 

  4. Fox MA, Afshari FS, Alexander JK, Colello RJ, Fuss B (2006) Growth cone like sensorimotor structures are characteristic features of postmigratory, premyelinating oligodendrocytes. Glia 53:563–566

    Article  PubMed  Google Scholar 

  5. Simpson PB, Armstrong RC (1999) Intracellular signals and cytoskeletal elements involved in oligodendrocyte progenitor migration. Glia 26:22–35

    Article  CAS  PubMed  Google Scholar 

  6. Song J, Goetz BD, Baas PW, Duncan ID (2001) Cytoskeletal reorganization during the formation of oligodendrocyte processes and branches. Mol Cell Neurosci 17:624–636

    Article  CAS  PubMed  Google Scholar 

  7. Tang DG, Tokumoto YM, Raff MC (2000) Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months. J Cell Biol 148:971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Azevedo MM, Domingues HS, Cordelieres FP, Sampaio P, Seixas AI, Relvas JB (2018) Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics. Glia. https://doi.org/10.1002/glia.23342

    Article  PubMed  Google Scholar 

  9. Nawaz S et al (2015) Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 34:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9:1506–1511

    Article  CAS  PubMed  Google Scholar 

  11. Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16:668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughes EG, Appel B (2016) The cell biology of CNS myelination. Curr Opin Neurobiol 39:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Domingues HS, Cruz A, Chan JR, Relvas JB, Rubinstein B, Pinto IM (2018) Mechanical plasticity during oligodendrocyte differentiation and myelination. Glia 66:5–14

    Article  PubMed  Google Scholar 

  14. Zuchero JB et al (2015) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34:152–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boggs JM, Rangaraj G (2000) Interaction of lipid-bound myelin basic protein with actin filaments and calmodulin. Biochemistry 39:7799–7806

    Article  CAS  PubMed  Google Scholar 

  16. Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave KA, Simons M (2009) Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J Neurosci 29:4794–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Snaidero N et al (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156:277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kippert A, Fitzner D, Helenius J, Simons M (2009) Actomyosin contractility controls cell surface area of oligodendrocytes. BMC Cell Biol. 10:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang H, Tewari A, Einheber S, Salzer JL, Melendez-Vasquez CV (2008) Myosin II has distinct functions in PNS and CNS myelin sheath formation. J Cell Biol 182:1171–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sloane JA, Vartanian TK (2007) Myosin Va controls oligodendrocyte morphogenesis and myelination. J Neurosci 27:11366–11375

    Article  CAS  PubMed  Google Scholar 

  21. Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y (2016) Knockdown of unconventional myosin ID expression induced morphological change in oligodendrocytes. ASN Neuro. https://doi.org/10.1177/1759091416669609

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buttery PC, ffrench-Constant C (2001) Process extension and myelin sheet formation in maturing oligodendrocytes. Prog Brain Res 132:115–130

    Article  CAS  PubMed  Google Scholar 

  23. Cahoy JD et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dugas JC, Tai YC, Speed TP, Ngai J, Barres BA (2006) Functional genomic analysis of oligodendrocyte differentiation. J Neurosci 26:10967–10983

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen JA, Maric D, Lau P, Barker JL, Hudson LD (2006) Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling. J Neurosci 26:9881–9891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bacon C, Lakics V, Machesky L, Rumsby M (2007) N-WASP regulates extension of filopodia and processes by oligodendrocyte progenitors, oligodendrocytes, and Schwann cells-implications for axon ensheathment at myelination. Glia 55:844–858

    Article  PubMed  Google Scholar 

  28. Kim HJ, DiBernardo AB, Sloane JA, Rasband MN, Solomon D, Kosaras B, Kwak SP, Vartanian TK (2006) WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J Neurosci 26:5849–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brockschnieder D, Sabanay H, Riethmacher D, Peles E (2006) Ermin, a myelinating oligodendrocyte-specific protein that regulates cell morphology. J Neurosci 26:757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang B et al (2005) Juxtanodin: an oligodendroglial protein that promotes cellular arborization and 2′,3′-cyclic nucleotide-3′-phosphodiesterase trafficking. Proc Natl Acad Sci USA 102:11527–11532

    Article  CAS  PubMed  Google Scholar 

  31. Lourenco T, Paes de Faria J, Bippes CA, Maia J, Lopes-da-Silva JA, Relvas JB, Graos M (2016) Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues. Sci Rep 6:21563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47

    Article  CAS  PubMed  Google Scholar 

  33. O’Meara RW, Michalski J-P, Anderson C, Bhanot K, Rippstein P, Kothary R (2013) Integrin-linked kinase regulates process extension in oligodendrocytes via control of actin cytoskeletal dynamics. J Neurosci 33:9781–9793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Michalski JP, Cummings SE, O’Meara RW, Kothary R (2016) Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics. J Neurochem 136:536–549

    Article  CAS  PubMed  Google Scholar 

  35. Forrest AD, Beggs HE, Reichardt LF, Dupree JL, Colello RJ, Fuss B (2009) Focal adhesion kinase (FAK): a regulator of CNS myelination. J Neurosci Res 87:3456–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Machacek M et al (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sperber BR, Boyle-Walsh EA, Engleka MJ, Gadue P, Peterson AC, Stein PL, Scherer SS, McMorris FA (2001) A unique role for Fyn in CNS myelination. J Neurosci 21:2039–2047

    Article  CAS  PubMed  Google Scholar 

  38. Liang X, Draghi NA, Resh MD (2004) Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. J Neurosci 24:7140–7149

    Article  CAS  PubMed  Google Scholar 

  39. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. Nat Commun 6:6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giera S et al (2015) The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 6:6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mi S et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745–751

    Article  CAS  PubMed  Google Scholar 

  42. Thurnherr T et al (2006) Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. J Neurosci 26:10110–10119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin-Vilchez S, Whitmore L, Asmussen H, Zareno J, Horwitz R, Newell-Litwa K (2017) RhoGTPase regulators orchestrate distinct stages of synaptic development. PLoS One 12:e0170464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feltri LM, Suter U, Relvas JB (2008) The function of RhoGTPases in axon ensheathment and myelination. Glia 56:1508–1517

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18 (author reply 49-62)

    Article  CAS  PubMed  Google Scholar 

  46. Peters A, Josephson K, Vincent SL (1991) Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anat Rec 229:384–398

    Article  CAS  PubMed  Google Scholar 

  47. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401

    Article  CAS  PubMed  Google Scholar 

  48. Tripathi RB, Jackiewicz M, McKenzie IA, Kougioumtzidou E, Grist M, Richardson WD (2017) Remarkable stability of myelinating oligodendrocytes in mice. Cell Rep 21:316–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21:696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hill RA, Li AM, Grutzendler J (2018) Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat Neurosci 21:683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yeung MS et al (2014) Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:766–774

    Article  CAS  PubMed  Google Scholar 

  53. Xiao L et al (2016) Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 19:1210–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gibson EM et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Makinodan M, Rosen KM, Ito S, Corfas G (2012) A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8:1148–1150

    Article  CAS  PubMed  Google Scholar 

  57. Scholz J, Klein MC, Behrens TE, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12:1370–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346:318–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marques S et al (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Darr AJ et al (2017) Identification of genome-wide targets of Olig2 in the adult mouse spinal cord using ChIP-Seq. PLoS One 12:e0186091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guttmann CR, Jolesz FA, Kikinis R, Killiany RJ, Moss MB, Sandor T, Albert MS (1998) White matter changes with normal aging. Neurology 50:972–978

    Article  CAS  PubMed  Google Scholar 

  62. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  CAS  PubMed  Google Scholar 

  63. Gunning-Dixon FM, Raz N (2000) The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 14:224–232

    Article  CAS  PubMed  Google Scholar 

  64. Peters A, Rosene DL, Moss MB, Kemper TL, Abraham CR, Tigges J, Albert MS (1996) Neurobiological bases of age-related cognitive decline in the rhesus monkey. J Neuropathol Exp Neurol 55:861–874

    Article  CAS  PubMed  Google Scholar 

  65. Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, Wang J, Hu X (2017) Aging of cerebral white matter. Ageing Res Rev 34:64–76

    Article  CAS  PubMed  Google Scholar 

  66. Peters A, Sethares C, Killiany RJ (2001) Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J Comp Neurol 435:241–248

    Article  CAS  PubMed  Google Scholar 

  67. Stahon KE, Bastian C, Griffith S, Kidd GJ, Brunet S, Baltan S (2016) Age-related changes in axonal and mitochondrial ultrastructure and function in white matter. J Neurosci 36:9990–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peters A, Kemper T (2012) A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiol Aging 33:2357–2372

    Article  PubMed  Google Scholar 

  69. Sturrock RR (1976) Changes in neurologia and myelination in the white matter of aging mice. J Gerontol 31:513–522

    Article  CAS  PubMed  Google Scholar 

  70. Peters A, Sethares C (2002) Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol 442:277–291

    Article  PubMed  Google Scholar 

  71. Bowley MP, Cabral H, Rosene DL, Peters A (2010) Age changes in myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus monkey. J Comp Neurol 518:3046–3064

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sandell JH, Peters A (2002) Effects of age on the glial cells in the rhesus monkey optic nerve. J Comp Neurol 445:13–28

    Article  PubMed  Google Scholar 

  73. Jahn O, Tenzer S, Werner HB (2009) Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol 40:55–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ishii A, Dutta R, Wark GM, Hwang SI, Han DK, Trapp BD, Pfeiffer SE, Bansal R (2009) Human myelin proteome and comparative analysis with mouse myelin. Proc Natl Acad Sci USA 106:14605–14610

    Article  PubMed  Google Scholar 

  75. Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR 3rd, Hetzer MW (2013) Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154:971–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Malone MJ, Szoke MC (1982) Neurochemical studies in aging brain. I. Structural changes in myelin lipids. J Gerontol 37:262–267

    Article  CAS  PubMed  Google Scholar 

  77. Tse KH, Herrup K (2017) DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 161:37–50

    Article  CAS  PubMed  Google Scholar 

  78. DiLoreto R, Murphy CT (2015) The cell biology of aging. Mol Biol Cell 26:4524–4531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Amberg D, Leadsham JE, Kotiadis V, Gourlay CW (2012) Cellular ageing and the actin cytoskeleton. Subcell Biochem 57:331–352

    Article  CAS  PubMed  Google Scholar 

  80. Arani A et al (2015) Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults. Neuroimage 111:59–64

    Article  PubMed  PubMed Central  Google Scholar 

  81. Patzig J et al (2016) Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. Elife 5:e17119

    Article  PubMed  PubMed Central  Google Scholar 

  82. Peters A (2009) The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front Neuroanat 3:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peters A (1996) Age-related changes in oligodendrocytes in monkey cerebral cortex. J Comp Neurol 371:153–163

    Article  CAS  PubMed  Google Scholar 

  84. Safaiyan S et al (2016) Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci 19:995–998

    Article  CAS  Google Scholar 

  85. Galatro TF et al (2017) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20:1162–1171

    Article  CAS  PubMed  Google Scholar 

  86. Yao Y, Lacroix D, Mak AF (2016) Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis. Biomech Model Mechanobiol 15:1495–1508

    Article  PubMed  Google Scholar 

  87. Wong SW, Sun S, Cho M, Lee KK, Mak AF (2015) H2O2 exposure affects myotube stiffness and actin filament polymerization. Ann Biomed Eng 43:1178–1188

    Article  PubMed  Google Scholar 

  88. Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR (2004) A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164:803–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Celeste Morley S, Sun GP, Bierer BE (2003) Inhibition of actin polymerization enhances commitment to and execution of apoptosis induced by withdrawal of trophic support. J Cell Biochem 88:1066–1076

    Article  CAS  PubMed  Google Scholar 

  90. Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA 106:14914–14919

    Article  PubMed  Google Scholar 

  91. Baird NA et al (2014) HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span. Science 346:360–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Higuchi R, Vevea JD, Swayne TC, Chojnowski R, Hill V, Boldogh IR, Pon LA (2013) Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr Biol 23:2417–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hirano A (1994) Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 20:3–11

    Article  CAS  PubMed  Google Scholar 

  94. Cichon J, Sun C, Chen B, Jiang M, Chen XA, Sun Y, Wang Y, Chen G (2012) Cofilin aggregation blocks intracellular trafficking and induces synaptic loss in hippocampal neurons. J Biol Chem 287:3919–3929

    Article  CAS  PubMed  Google Scholar 

  95. Mustafa AG, Wang JA, Carrico KM, Hall ED (2011) Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. J Neurochem 117:579–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Alexandra Guedes for the illustrations in the article. Work in our laboratories was funded by the project NORTE-01-0145-FEDER-000008-Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). We also acknowledge the financial support of FEDER funds through the COMPETE 2020-Operational Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT (Fundação para a Ciência e a Tecnologia)/MCTES in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). IMP acknowledges the support of the Marie Curie COFUND Programme “NanoTRAINforGrowth”, the EU FP7 grant agreement number 600375, and the project Nanotechnology-based functional solutions (NORTE-01–0145-FEDER-000019), co-financed by NORTE 2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). MMA (SFRH/BD/90301/2012) and AIS (SFRH/BPD/79417/2011) are recipients of individual fellowships from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Isabel Seixas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seixas, A.I., Azevedo, M.M., Paes de Faria, J. et al. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell. Mol. Life Sci. 76, 1–11 (2019). https://doi.org/10.1007/s00018-018-2915-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2915-8

Keywords

Navigation