Skip to main content

Advertisement

Log in

The capacity of oocytes for DNA repair

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Female fertility and offspring health are critically dependent on the maintenance of an adequate supply of high-quality oocytes. Like somatic cells, oocytes are subject to a variety of different types of DNA damage arising from endogenous cellular processes and exposure to exogenous genotoxic stressors. While the repair of intentionally induced DNA double strand breaks in gametes during meiotic recombination is well characterised, less is known about the ability of oocytes to repair pathological DNA damage and the relative contribution of DNA repair to oocyte quality is not well defined. This review will discuss emerging data suggesting that oocytes are in fact capable of efficient DNA repair and that DNA repair may be an important mechanism for ensuring female fertility, as well as the transmission of high-quality genetic material to subsequent generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lindahl T, Barnes D (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–134

    Article  PubMed  CAS  Google Scholar 

  2. Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    Article  PubMed  CAS  Google Scholar 

  3. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mishina Y, Duguid EM, He C (2006) Direct reversal of DNA alkylation damage. Chem Rev 106(2):215–232. https://doi.org/10.1021/cr0404702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078. http://www.nature.com/nature/journal/v461/n7267/suppinfo/nature08467_S1.html

  6. van den Berg MM, van Maarle MC, van Wely M, Goddijn M (2012) Genetics of early miscarriage. Biochem Biophys Acta 1822(12):1951–1959. https://doi.org/10.1016/j.bbadis.2012.07.001

    Article  PubMed  CAS  Google Scholar 

  7. Wear HM, McPike MJ, Watanabe KH (2016) From primordial germ cells to primordial follicles: a review and visual representation of early ovarian development in mice. J Ovarian Res 9:36. https://doi.org/10.1186/s13048-016-0246-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N (2016) Ovarian folliculogenesis. Results Probl Cell Differ 58:167–190. https://doi.org/10.1007/978-3-319-31973-5_7

    Article  PubMed  CAS  Google Scholar 

  9. Zhang H, Liu K (2015) Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update 21(6):779–786. https://doi.org/10.1093/humupd/dmv037

    Article  PubMed  CAS  Google Scholar 

  10. McGee EA, Raj RS (2015) Regulators of ovarian preantral follicle development. Semin Reprod Med 33(3):179–184. https://doi.org/10.1055/s-0035-1552584

    Article  PubMed  CAS  Google Scholar 

  11. Findlay JK, Hutt KJ, Hickey M, Anderson RA (2015) How is the number of primordial follicles in the ovarian reserve established? Biol Reprod 93(5):111. https://doi.org/10.1095/biolreprod.115.133652

    Article  PubMed  CAS  Google Scholar 

  12. Hanoux V, Pairault C, Bakalska M, Habert R, Livera G (2007) Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary. Cell Death Differ 14(4):671–681. https://doi.org/10.1038/sj.cdd.4402052

    Article  PubMed  CAS  Google Scholar 

  13. Kerr JB, Brogan L, Myers M, Hutt KJ, Mladenovska T, Ricardo S, Hamza K, Scott CL, Strasser A, Findlay JK (2012) The primordial follicle reserve is not renewed after chemical or gamma-irradiation mediated depletion. Reproduction 143(4):469–476. https://doi.org/10.1530/REP-11-0430

    Article  PubMed  CAS  Google Scholar 

  14. Matsuda Y, Tobari I (1988) Chromosomal analysis in mouse eggs fertilized in vitro with sperma exposed to ultraviolet light (UV) and methyl and ethyl methanesulfonate (MMS and EMS). Mutat Res Fundam Mol Mech Mutagen 198(1):131–144

    Article  CAS  Google Scholar 

  15. Pedersen RA, Brandriff B (1980) Radiation- and drug-induced DNA repair in mammalian oocytes and embryos. In: Generoso WM, Shelby MD, de Serres FJ (eds) DNA repair and mutagenesis in eukaryotes. Basic Life Sciences, vol 15. Springer, Boston, MA, pp 389–410

  16. Masui Y, Pedersen R (1975) Ultraviolet light-induced unscheduled DNA synthesis in mouse oocytes during meiotic maturation. Nature 257(5528):705–706

    Article  PubMed  CAS  Google Scholar 

  17. Matsumoto Y (1999) Base excision repair assay using Xenopus laevis oocyte extracts. In: Henderson DS (ed) DNA repair protocols. Methods in Molecular Biology™, vol 113. Humana Press, pp 289–300

  18. Varlet I, Radman M, Brooks P (1990) DNA mismatch repair in Xenopus egg extracts: repair efficiency and DNA repair synthesis for all single base-pair mismatches. Proc Natl Acad Sci 87(20):7883–7887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6(1):133–144

    Article  PubMed  CAS  Google Scholar 

  20. Cui XS, Li XY, Yin XJ, Kong IK, Kang JJ, Kim NH (2007) Maternal gene transcription in mouse oocytes: genes implicated in oocyte maturation and fertilization. J Reprod Dev 53(2):405–418

    Article  PubMed  CAS  Google Scholar 

  21. Su Y-Q, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, Affourtit J, Eppig JJ (2007) Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol 302(1):104–117. https://doi.org/10.1016/j.ydbio.2006.09.008

    Article  PubMed  CAS  Google Scholar 

  22. Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, De Vos J, Hamamah S (2007) Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online 14(2):175–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Menezo Y Jr, Russo G, Tosti E, El Mouatassim S, Benkhalifa M (2007) Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet 24(11):513–520. https://doi.org/10.1007/s10815-007-9167-0

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jaroudi S, Kakourou G, Cawood S, Doshi A, Ranieri DM, Serhal P, Harper JC, SenGupta SB (2009) Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod 24(10):2649–2655. https://doi.org/10.1093/humrep/dep224

    Article  PubMed  CAS  Google Scholar 

  25. Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272(2):483–496. https://doi.org/10.1016/j.ydbio.2004.05.018

    Article  PubMed  CAS  Google Scholar 

  26. Zheng P, Schramm RD, Latham KE (2005) Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biol Reprod 72(6):1359–1369. https://doi.org/10.1095/biolreprod.104.039073

    Article  PubMed  CAS  Google Scholar 

  27. Pan H, O’Brien MJ, Wigglesworth K, Eppig JJ, Schultz RM (2005) Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev Biol 286(2):493–506. https://doi.org/10.1016/j.ydbio.2005.08.023

    Article  PubMed  CAS  Google Scholar 

  28. Yoon S-J, Kim K-H, Chung H-M, Choi D-H, Lee W-S, Cha K-Y, Lee K-A (2006) Gene expression profiling of early follicular development in primordial, primary, and secondary follicles. Fertil Steril 85(1):193–203

    Article  PubMed  CAS  Google Scholar 

  29. Govindaraj V, Krishnagiri H, Chakraborty P, Vasudevan M, Rao AJ (2017) Age-related changes in gene expression patterns of immature and aged rat primordial follicles. Syst Biol Reprod Med 63(1):37–48. https://doi.org/10.1080/19396368.2016.1267820

    Article  PubMed  CAS  Google Scholar 

  30. Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S (2010) Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci 107(41):17639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang X, Liu D, He D, Suo S, Xia X, He X, Han J-DJ, Zheng P (2017) Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos. Genome Res 27(4):567–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gagliardi C, Liukkonen JR, Phillippi-Falkenstein KM, Harrison RM, Kubisch HM (2007) Age as a determinant of reproductive success among captive female rhesus macaques (Macaca mulatta). Reproduction 133(4):819–826

    Article  PubMed  CAS  Google Scholar 

  33. Govindaraj V, Keralapura Basavaraju R, Rao AJ (2015) Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online 30(3):303–310. https://doi.org/10.1016/j.rbmo.2014.11.010

    Article  PubMed  CAS  Google Scholar 

  34. Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M, Moy F, Goswami S, Oktay K (2013) Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Science translational medicine 5(172):172ra121. https://doi.org/10.1126/scitranslmed.3004925

    Article  CAS  Google Scholar 

  35. Grøndahl ML, Yding Andersen C, Bogstad J, Nielsen FC, Meinertz H, Borup R (2010) Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod 25(4):957–968. https://doi.org/10.1093/humrep/deq014

    Article  PubMed  CAS  Google Scholar 

  36. Xiao W, Samson L (1993) In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc Natl Acad Sci USA 90(6):2117–2121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jena N (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37(3):503–517

    Article  PubMed  CAS  Google Scholar 

  38. Takami M, Preston S, Toyloy V, Behrman HR (1999) Antioxidants reversibly inhibit the spontaneous resumption of meiosis. Am J Physiol Endocrinol Metab 276(4):E684–E688

    Article  CAS  Google Scholar 

  39. Takami M, Preston S, Behrman H (2000) Eicosatetraynoic and eicosatriynoic acids, lipoxygenase inhibitors, block meiosis via antioxidant action. Am J Physiol Cell Physiol 278(4):C646–C650

    Article  PubMed  CAS  Google Scholar 

  40. Karuputhula NB, Chattopadhyay R, Chakravarty B, Chaudhury K (2013) Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med 59(2):91–98

    Article  PubMed  CAS  Google Scholar 

  41. Elizur SE, Lebovitz O, Orvieto R, Dor J, Zan-Bar T (2014) Reactive oxygen species in follicular fluid may serve as biochemical markers to determine ovarian aging and follicular metabolic age. Gynecol Endocrinol 30(10):705–707

    Article  PubMed  CAS  Google Scholar 

  42. Oyawoye O, Abdel Gadir A, Garner A, Constantinovici N, Perrett C, Hardiman P (2003) Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod 18(11):2270–2274

    Article  PubMed  CAS  Google Scholar 

  43. Desmeules P, Devine PJ (2006) Characterizing the ovotoxicity of cyclophosphamide metabolites on cultured mouse ovaries. Toxicol Sci 90(2):500–509. https://doi.org/10.1093/toxsci/kfj086

    Article  PubMed  CAS  Google Scholar 

  44. Nozaki Y, Furubo E, Matsuno T, Fukui R, Kizawa K, Kozaki T, Sanzen T (2009) Collaborative work on evaluation of ovarian toxicity. 6) Two- or four-week repeated-dose studies and fertility study of cisplatin in female rats. J Toxicol Sci 34(Suppl 1):SP73–SP81

    PubMed  CAS  Google Scholar 

  45. Oktem O, Oktay K (2007) A novel ovarian xenografting model to characterize the impact of chemotherapy agents on human primordial follicle reserve. Cancer Res 67(21):10159–10162. https://doi.org/10.1158/0008-5472.CAN-07-2042

    Article  PubMed  CAS  Google Scholar 

  46. Petrillo SK, Desmeules P, Truong TQ, Devine PJ (2011) Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro. Toxicol Appl Pharmacol 253(2):94–102. https://doi.org/10.1016/j.taap.2011.03.012

    Article  PubMed  CAS  Google Scholar 

  47. Yucebilgin MS, Terek MC, Ozsaran A, Akercan F, Zekioglu O, Isik E, Erhan Y (2004) Effect of chemotherapy on primordial follicular reserve of rat: an animal model of premature ovarian failure and infertility. Aust N Z J Obstet Gynaecol 44(1):6–9. https://doi.org/10.1111/j.1479-828X.2004.00143.x

    Article  PubMed  Google Scholar 

  48. Yuksel A, Bildik G, Senbabaoglu F, Akin N, Arvas M, Unal F, Kilic Y, Karanfil I, Eryilmaz B, Yilmaz P, Ozkanbas C, Taskiran C, Aksoy S, Guzel Y, Balaban B, Ince U, Iwase A, Urman B, Oktem O (2015) The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Hum Reprod 30(12):2926–2935. https://doi.org/10.1093/humrep/dev256

    Article  PubMed  CAS  Google Scholar 

  49. Nielsen BF, Schmidt AA, Mulvihill JJ, Frederiksen K, Tawn EJ, Stovall M, Johansen C, Boice JD Jr, Winther JF (2017) Chromosomal abnormalities in offspring of young cancer survivors: a population-based cohort study in Denmark. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx248

    Article  Google Scholar 

  50. Seppanen VI, Artama MS, Malila NK, Pitkaniemi JM, Rantanen ME, Ritvanen AK, Madanat-Harjuoja LM (2016) Risk for congenital anomalies in offspring of childhood, adolescent and young adult cancer survivors. Int J Cancer 139(8):1721–1730. https://doi.org/10.1002/ijc.30226

    Article  PubMed  CAS  Google Scholar 

  51. Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73(1):39–85

    Article  PubMed  CAS  Google Scholar 

  52. Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 6(8):1079–1099. https://doi.org/10.1016/j.dnarep.2007.03.008

    Article  PubMed  CAS  Google Scholar 

  53. Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12(2):104–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sakumi K, Sekiguchi M (1990) Structures and functions of DNA glycosylases. Mutat Res DNA Repair 236(2–3):161–172

    Article  PubMed  CAS  Google Scholar 

  55. Seeberg E, Eide L, Bjørås M (1995) The base excision repair pathway. Trends Biochem Sci 20(10):391–397. https://doi.org/10.1016/S0968-0004(00)89086-6

    Article  PubMed  CAS  Google Scholar 

  56. Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14(12):2491–2507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1(4):225–236

    Article  PubMed  CAS  Google Scholar 

  58. Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN (1982) The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1(6):681–686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four-and eight-cell stages of preimplantation development. Nature 332(6163):459–461

    Article  PubMed  CAS  Google Scholar 

  60. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P (2016) Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 28(1–2):1–10. https://doi.org/10.1071/RD15325

    Article  PubMed  CAS  Google Scholar 

  61. Smith TB, Dun MD, Smith ND, Curry BJ, Connaughton HS, Aitken RJ (2013) The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J Cell Sci 126(6):1488–1497. https://doi.org/10.1242/jcs.121657

    Article  PubMed  CAS  Google Scholar 

  62. Lord T, Aitken RJ (2015) Fertilization stimulates 8-hydroxy-2′-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Dev Biol 406(1):1–13. https://doi.org/10.1016/j.ydbio.2015.07.024

    Article  PubMed  CAS  Google Scholar 

  63. Ladstätter S, Tachibana-Konwalski K (2016) A surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming. Cell 167(7):1774.e1713–1787.e1713. https://doi.org/10.1016/j.cell.2016.11.009

    Article  CAS  Google Scholar 

  64. Matsumoto Y, Kim K, Bogenhagen DF (1994) Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol Cell Biol 14(9):6187–6197. https://doi.org/10.1128/mcb.14.9.6187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Oda N, Saxena JK, Jenkins TM, Prasad R, Wilson SH, Ackerman EJ (1996) DNA polymerases α and β are required for DNA repair in an efficient nuclear extract from Xenopus oocytes. J Biol Chem 271(23):13816–13820. https://doi.org/10.1074/jbc.271.23.13816

    Article  PubMed  CAS  Google Scholar 

  66. Frosina G, Fortini P, Rossi O, Carrozzino F, Raspaglio G, Cox LS, Lane DP, Abbondandolo A, Dogliotti E (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem 271(16):9573–9578

    Article  PubMed  CAS  Google Scholar 

  67. Klungland A, Lindahl T (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16(11):3341–3348. https://doi.org/10.1093/emboj/16.11.3341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Can Res 51(12):3075–3079

    CAS  Google Scholar 

  69. Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci 88(16):7160–7164. https://doi.org/10.1073/pnas.88.16.7160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Schaaper RM (1993) Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 268(32):23762–23765

    PubMed  CAS  Google Scholar 

  71. Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279(17):16895–16898. https://doi.org/10.1074/jbc.R400006200

    Article  PubMed  CAS  Google Scholar 

  72. Brown KD, Rathi A, Kamath R, Beardsley DI, Zhan Q, Mannino JL, Baskaran R (2003) The mismatch repair system is required for S-phase checkpoint activation. Nat Genet 33(1):80

    Article  PubMed  CAS  Google Scholar 

  73. Stojic L, Brun R, Jiricny J (2004) Mismatch repair and DNA damage signalling. DNA Repair 3(8–9):1091–1101. https://doi.org/10.1016/j.dnarep.2004.06.006

    Article  PubMed  CAS  Google Scholar 

  74. Kolodner RD, Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9(1):89–96. https://doi.org/10.1016/S0959-437X(99)80013-6

    Article  PubMed  CAS  Google Scholar 

  75. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  PubMed  CAS  Google Scholar 

  76. Edelmann W, Cohen PE, Kneitz B, Winand N, Lia M, Heyer J, Kolodner R, Pollard JW, Kucherlapati R (1999) Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat Genet 21(1):123–127

    Article  PubMed  CAS  Google Scholar 

  77. Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H, Kolodner RD, Kucherlapati R, Pollard JW, Edelmann W (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14(9):1085–1097. https://doi.org/10.1101/gad.14.9.1085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wei K, Kucherlapati R, Edelmann W (2002) Mouse models for human DNA mismatch-repair gene defects. Trends Mol Med 8(7):346–353. https://doi.org/10.1016/S1471-4914(02)02359-6

    Article  PubMed  CAS  Google Scholar 

  79. Guo T, Zhao S, Zhao S, Chen M, Li G, Jiao X, Wang Z, Zhao Y, Qin Y, Gao F, Chen ZJ (2017) Mutations in MSH5 in primary ovarian insufficiency. Hum Mol Genet 26(8):1452–1457. https://doi.org/10.1093/hmg/ddx044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mandon-Pepin B, Touraine P, Kuttenn F, Derbois C, Rouxel A, Matsuda F, Nicolas A, Cotinot C, Fellous M (2008) Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur J Endocrinol 158(1):107–115. https://doi.org/10.1530/EJE-07-0400

    Article  PubMed  CAS  Google Scholar 

  81. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85(7):1125–1134

    Article  PubMed  CAS  Google Scholar 

  82. Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, Elliott EA, Yu J, Ashley T, Arnheim N (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82(2):309–319

    Article  PubMed  CAS  Google Scholar 

  83. Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, Thomas J, Cheng J, Touchman JW, Green ED (2002) Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet 31(4):385

    Article  PubMed  CAS  Google Scholar 

  84. Wang T-F, Kleckner N, Hunter N (1999) Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci 96(24):13914–13919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hunter N, Borts RH (1997) Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev 11(12):1573–1582

    Article  PubMed  CAS  Google Scholar 

  86. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie D-M, Monell C, Arnheim N, Bradley A (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13(3):336–342

    Article  PubMed  CAS  Google Scholar 

  87. Thoma F (1999) Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. EMBO J 18(23):6585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hirao Y, Yanagimachi R (1978) Detrimental effect of visible light on meiosis of mammalian eggs in vitro. J Exp Zool Part A Ecol Genet Physiol 206(3):365–369

    Article  CAS  Google Scholar 

  89. Colton SL, Xu XS, Wang YA, Wang G (2006) The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair-facilitated cell survival with cisplatin treatment. J Biol Chem 281(37):27117–27125

    Article  PubMed  CAS  Google Scholar 

  90. Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier Y (2002) Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Can Res 62(17):4899–4902

    CAS  Google Scholar 

  91. Vermeulen W, Jaeken J, Jaspers NG, Bootsma D, Hoeijmakers JH (1993) Xeroderma pigmentosum complementation group G associated with Cockayne syndrome. Am J Hum Genet 53(1):185–192

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Cooper PK, Nouspikel T, Clarkson SG, Leadon SA (1997) Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275(5302):990–993

    Article  PubMed  CAS  Google Scholar 

  93. Nouspikel T, Lalle P, Leadon SA, Cooper PK, Clarkson SG (1997) A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc Natl Acad Sci USA 94(7):3116–3121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lans H, Marteijn JA, Schumacher B, Hoeijmakers JH, Jansen G, Vermeulen W (2010) Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet 6(5):e1000941

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sugitani N, Sivley RM, Perry KE, Capra JA, Chazin WJ (2016) XPA: a key scaffold for human nucleotide excision repair. DNA Repair (Amst) 44:123–135. https://doi.org/10.1016/j.dnarep.2016.05.018

    Article  CAS  Google Scholar 

  96. Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137. https://doi.org/10.1146/annurev.genet.34.1.77

    Article  PubMed  CAS  Google Scholar 

  97. Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1(1):22–33

    Article  PubMed  CAS  Google Scholar 

  98. Tsutakawa SE, Cooper PK (2000) Transcription-coupled repair of oxidative DNA damage in human cells: mechanisms and consequences. Cold Spring Harb Symp Quant Biol 65:201–215

    Article  PubMed  CAS  Google Scholar 

  99. Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2(2):223–232

    Article  PubMed  CAS  Google Scholar 

  100. Cheo DL, Ruven HJ, Meira LB, Hammer RE, Burns DK, Tappe NJ, van Zeeland AA, Mullenders LH, Friedberg EC (1997) Characterization of defective nucleotide excision repair in XPC mutant mice. Mutat Res 374(1):1–9

    Article  PubMed  CAS  Google Scholar 

  101. de Vries A, van Oostrom CT, Hofhuis FM, Dortant PM, Berg RJ, de Gruijl FR, Wester PW, van Kreijl CF, Capel PJ, van Steeg H, Verbeek SJ (1995) Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377(6545):169–173. https://doi.org/10.1038/377169a0

    Article  PubMed  Google Scholar 

  102. Weeda G, Donker I, de Wit J, Morreau H, Janssens R, Vissers CJ, Nigg A, van Steeg H, Bootsma D, Hoeijmakers JH (1997) Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 7(6):427–439

    Article  PubMed  CAS  Google Scholar 

  103. de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH (2002) Premature aging in mice deficient in DNA repair and transcription. Science 296(5571):1276–1279. https://doi.org/10.1126/science.1070174

    Article  PubMed  Google Scholar 

  104. de Boer J, de Wit J, van Steeg H, Berg RJ, Morreau H, Visser P, Lehmann AR, Duran M, Hoeijmakers JH, Weeda G (1998) A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol Cell 1(7):981–990

    Article  PubMed  Google Scholar 

  105. Clauson C, Schärer OD, Niedernhofer L (2013) Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 5(10):a012732. https://doi.org/10.1101/cshperspect.a012732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Schärer OD (2005) DNA interstrand crosslinks: natural and drug-induced DNA adducts that induce unique cellular responses. ChemBioChem 6(1):27–32

    Article  PubMed  Google Scholar 

  107. Chow EJ, Stratton KL, Leisenring WM, Oeffinger KC, Sklar CA, Donaldson SS, Ginsberg JP, Kenney LB, Levine JM, Robison LL, Shnorhavorian M, Stovall M, Armstrong GT, Green DM (2016) Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol 17(5):567–576. https://doi.org/10.1016/S1470-2045(16)00086-3

    Article  PubMed  PubMed Central  Google Scholar 

  108. Moldovan G-L, D’Andrea AD (2009) How the fanconi anemia pathway guards the genome. Annu Rev Genet 43:223–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kennedy RD, D’Andrea AD (2005) The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev 19(24):2925–2940. https://doi.org/10.1101/gad.1370505

    Article  PubMed  CAS  Google Scholar 

  110. Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D’Andrea AD (2001) Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7(2):249–262

    Article  PubMed  CAS  Google Scholar 

  111. Chen M, Tomkins DJ, Auerbach W, McKerlie C, Youssoufian H, Liu L, Gan O, Carreau M, Auerbach A, Groves T (1996) Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat Genet 12(4):448–451

    Article  PubMed  CAS  Google Scholar 

  112. Cheng NC, van de Vrugt HJ, van der Valk MA, Oostra AB, Krimpenfort P, de Vries Y, Joenje H, Berns A, Arwert F (2000) Mice with a targeted disruption of the Fanconi anemia homolog Fanca. Hum Mol Genet 9(12):1805–1811

    Article  PubMed  CAS  Google Scholar 

  113. Wong JC, Alon N, Mckerlie C, Huang JR, Meyn MS, Buchwald M (2003) Targeted disruption of exons 1 to 6 of the Fanconi anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia. Hum Mol Genet 12(16):2063–2076

    Article  PubMed  CAS  Google Scholar 

  114. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294

    Article  PubMed  CAS  Google Scholar 

  115. McDonald JP, Rapić-Otrin V, Epstein JA, Broughton BC, Wang X, Lehmann AR, Wolgemuth DJ, Woodgate R (1999) Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase η. Genomics 60(1):20–30. https://doi.org/10.1006/geno.1999.5906

    Article  PubMed  CAS  Google Scholar 

  116. Yamada A, Masutani C, Iwai S, Hanaoka F (2000) Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase η. Nucleic Acids Res 28(13):2473–2480. https://doi.org/10.1093/nar/28.13.2473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Yagi Y, Ogawara D, Iwai S, Hanaoka F, Akiyama M, Maki H (2005) DNA polymerases η and κ are responsible for error-free translesion DNA synthesis activity over a cis–syn thymine dimer in Xenopus laevis oocyte extracts. DNA Repair 4(11):1252–1269. https://doi.org/10.1016/j.dnarep.2005.06.010

    Article  PubMed  CAS  Google Scholar 

  118. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, Artini PG, Piomboni P, Focarelli R (2008) Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update 14(2):131–142. https://doi.org/10.1093/humupd/dmm048

    Article  PubMed  CAS  Google Scholar 

  119. Kerr JB, Hutt KJ, Michalak EM, Cook M, Vandenberg CJ, Liew SH, Bouillet P, Mills A, Scott CL, Findlay JK, Strasser A (2012) DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol Cell 48(3):343–352. https://doi.org/10.1016/j.molcel.2012.08.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kerr JB, Hutt KJ, Cook M, Speed TP, Strasser A, Findlay JK, Scott CL (2012) Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nat Med 18(8):1170–1172. https://doi.org/10.1038/nm.2889 (author reply 1172–1174)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409–433. https://doi.org/10.1101/gad.2021311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, Donaldson SS, Byrne J, Robison LL (2009) Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 27(16):2677–2685. https://doi.org/10.1200/JCO.2008.20.1541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Shaffer LG, Lupski JR (2000) Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 34:297–329. https://doi.org/10.1146/annurev.genet.34.1.297

    Article  PubMed  CAS  Google Scholar 

  124. Ravel C, Letur H, Le Lannou D, Barthelemy C, Bresson JL, Siffroi JP, Genetics Commission of the French Federation of C (2007) High incidence of chromosomal abnormalities in oocyte donors. Fertil Steril 87(2):439–441. https://doi.org/10.1016/j.fertnstert.2006.06.053

    Article  PubMed  Google Scholar 

  125. Lim AS, Tsakok MF (1997) Age-related decline in fertility: a link to degenerative oocytes? Fertil Steril 68(2):265–271

    Article  PubMed  CAS  Google Scholar 

  126. McFadden DE, Friedman JM (1997) Chromosome abnormalities in human beings. Mutat Res 396(1–2):129–140

    Article  PubMed  CAS  Google Scholar 

  127. Zhang YX, Zhang YP, Gu Y, Guan FJ, Li SL, Xie JS, Shen Y, Wu BL, Ju W, Jenkins EC, Brown WT, Zhong N (2009) Genetic analysis of first-trimester miscarriages with a combination of cytogenetic karyotyping, microsatellite genotyping and arrayCGH. Clin Genet 75(2):133–140. https://doi.org/10.1111/j.1399-0004.2008.01131.x

    Article  PubMed  CAS  Google Scholar 

  128. Heilstedt HA, Ballif BC, Howard LA, Lewis RA, Stal S, Kashork CD, Bacino CA, Shapira SK, Shaffer LG (2003) Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the syndrome. Am J Hum Genet 72(5):1200–1212. https://doi.org/10.1086/375179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC (2014) Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343(6170):533–536. https://doi.org/10.1126/science.1247671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254. https://doi.org/10.1038/85798

    Article  PubMed  CAS  Google Scholar 

  131. Kujjo LL, Laine T, Pereira RJ, Kagawa W, Kurumizaka H, Yokoyama S, Perez GI (2010) Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51. PLoS One 5(2):e9204. https://doi.org/10.1371/journal.pone.0009204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Williams RS, Williams JS, Tainer JA (2007) Mre11-Rad50–Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85(4):509–520. https://doi.org/10.1139/O07-069

    Article  PubMed  CAS  Google Scholar 

  133. Cherry SM, Adelman CA, Theunissen JW, Hassold TJ, Hunt PA, Petrini JHJ (2007) The Mre11 complex influences DNA repair, synapsis, and crossing over in murine meiosis. Curr Biol 17(4):373–378. https://doi.org/10.1016/j.cub.2006.12.048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Inagaki A, Roset R, Petrini JH (2016) Functions of the MRE11 complex in the development and maintenance of oocytes. Chromosoma 125(1):151–162

    Article  PubMed  CAS  Google Scholar 

  135. Mayer A, Baran V, Sakakibara Y, Brzakova A, Ferencova I, Motlik J, Kitajima TS, Schultz RM, Solc P (2016) DNA damage response during mouse oocyte maturation. Cell Cycle 15(4):546–558. https://doi.org/10.1080/15384101.2015.1128592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Li H, Vogel H, Holcomb VB, Gu YS, Hasty P (2007) Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol Cell Biol 27(23):8205–8214. https://doi.org/10.1128/Mcb.00785-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Li GC, Ouyang HH, Li XL, Nagasawa H, Little JB, Chen DJ, Ling CC, Fuks Z, Cordon-Cardo C (1998) Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 2(1):1–8. https://doi.org/10.1016/S1097-2765(00)80108-2

    Article  PubMed  CAS  Google Scholar 

  138. Gorbunova V, Seluanov A, Mao Z, Hine C (2007) Changes in DNA repair during aging. Nucleic Acids Res 35(22):7466–7474. https://doi.org/10.1093/nar/gkm756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Yukawa M, Oda S, Mitani H, Nagata M, Aoki F (2007) Deficiency in the response to DNA double-strand breaks in mouse early preimplantation embryos. Biochem Biophys Res Commun 358(2):578–584. https://doi.org/10.1016/j.bbrc.2007.04.162

    Article  PubMed  CAS  Google Scholar 

  140. Goedecke W, Vielmetter W, Pfeiffer P (1992) Activation of a system for the joining of nonhomologous DNA ends during Xenopus egg maturation. Mol Cell Biol 12(2):811–816. https://doi.org/10.1128/mcb.12.2.811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Hagmann M, Adlkofer K, Pfeiffer P, Bruggmann R, Georgiev O, Rungger D, Schaffner W (1996) Dramatic changes in the ratio of homologous recombination to nonhomologous DNA-end joining in oocytes and early embryos of Xenopus laevis. Bio Chem Hoppe-Seyler 377(4):239–250

    Article  CAS  Google Scholar 

  142. Lowndes NF, Murguia JR (2000) Sensing and responding to DNA damage. Curr Opin Genet Dev 10(1):17–25. https://doi.org/10.1016/S0959-437X(99)00050-7

    Article  PubMed  CAS  Google Scholar 

  143. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15(17):2177–2196. https://doi.org/10.1101/gad.914401

    Article  PubMed  CAS  Google Scholar 

  144. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745. https://doi.org/10.1016/j.molcel.2007.11.015

    Article  PubMed  CAS  Google Scholar 

  145. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR (2008) HP1-[bgr] mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453(7195):682–686. http://www.nature.com/nature/journal/v453/n7195/suppinfo/nature06875_S1.html

  146. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166. https://doi.org/10.1126/science.1140321

    Article  PubMed  CAS  Google Scholar 

  147. Kurimasa A, Kumano S, Boubnov NV, Story MD, Tung C-S, Peterson SR, Chen DJ (1999) Requirement for the kinase activity of human DNA-dependent protein kinase catalytic subunit in DNA strand break rejoining. Mol Cell Biol 19(5):3877–3884. https://doi.org/10.1128/mcb.19.5.3877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. DeFazio LG, Stansel RM, Griffith JD, Chu G (2002) Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 21(12):3192–3200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Kurimasa A, Ouyang H, Dong LJ, Wang S, Li XL, Cordon-Cardo C, Chen DJ, Li GC (1999) Catalytic subunit of DNA-dependent protein kinase: impact on lymphocyte development and tumorigenesis. Proc Natl Acad Sci USA 96(4):1403–1408. https://doi.org/10.1073/pnas.96.4.1403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, WynshawBoris A (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86(1):159–171. https://doi.org/10.1016/S0092-8674(00)80086-0

    Article  PubMed  CAS  Google Scholar 

  151. Lavin MF, Shiloh Y (1997) The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 15:177–202. https://doi.org/10.1146/annurev.immunol.15.1.177

    Article  PubMed  CAS  Google Scholar 

  152. Culligan KM, Britt AB (2008) Both ATM and ATR promote the efficient and accurate processing of programmed meiotic double-strand breaks. Plant J 55(4):629–638

    Article  PubMed  CAS  Google Scholar 

  153. Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K, Rottinghaus S, Jackson SP, Tagle D, Ried T, Wynshaw-Boris A (1998) Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 125(20):4007–4017

    PubMed  CAS  Google Scholar 

  154. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10(19):2411–2422. https://doi.org/10.1101/gad.10.19.2411

    Article  PubMed  CAS  Google Scholar 

  155. Keegan KS, Holtzman DA, Plug AW, Christenson ER, Brainerd EE, Flaggs G, Bentley NJ, Taylor EM, Meyn MS, Moss SB (1996) The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev 10(19):2423–2437

    Article  PubMed  CAS  Google Scholar 

  156. Moens PB, Tarsounas M, Morita T, Habu T, Rottinghaus ST, Freire R, Jackson SP, Barlow C, Wynshaw-Boris A (1999) The association of ATR protein with mouse meiotic chromosome cores. Chromosoma 108(2):95–102

    Article  PubMed  CAS  Google Scholar 

  157. Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, Jasin M (2005) Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA 102(3):737–742. https://doi.org/10.1073/pnas.0406212102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Marangos P, Carroll J (2012) Oocytes progress beyond prophase in the presence of DNA damage. Curr Biol 22(11):989–994. https://doi.org/10.1016/j.cub.2012.03.063

    Article  PubMed  CAS  Google Scholar 

  159. Collins JK, Lane SI, Merriman JA, Jones KT (2015) DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint. Nat Commun 6:8553. https://doi.org/10.1038/ncomms9553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Lin F, Ma X-S, Wang Z-B, Wang Z-W, Luo Y-B, Huang L, Jiang Z-Z, Hu M-W, Schatten H, Sun Q-Y (2014) Different fates of oocytes with DNA double-strand breaks in vitro and in vivo. Cell Cycle 13(17):2674–2680. https://doi.org/10.4161/15384101.2015.945375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Yuen WS, Merriman JA, O’Bryan MK, Jones KT (2012) DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes. PLoS One 7(8):e43875. https://doi.org/10.1371/journal.pone.0043875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Schreiber V, Dantzer F, Ame J-C, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528. http://www.nature.com/nrm/journal/v7/n7/suppinfo/nrm1963_S1.html

  163. Masutani M, Nozaki T, Nakamoto K, Nakagama H, Suzuki H, Kusuoka O, Tsutsumi M, Sugimura T (2000) The response of Parp knockout mice against DNA damaging agents. Mutat Res Rev Mutat Res 462(2):159–166

    Article  CAS  Google Scholar 

  164. De Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M (1997) Requirement of poly (ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci 94(14):7303–7307

    Article  PubMed  PubMed Central  Google Scholar 

  165. Heller B, Wang Z-Q, Wagner EF, Radons J, Burkle A, Fehsel K, Burkart V, Kolb H (1995) Inactivation of the poly (ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem 270(19):11176–11180

    Article  PubMed  CAS  Google Scholar 

  166. Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF (1995) Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9(5):509–520

    Article  PubMed  CAS  Google Scholar 

  167. di Fagagna FdA, Hande MP, Tong W-M, Lansdorp PM, Wang Z-Q, Jackson SP (1999) Functions of poly (ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet 23(1):76–80

    Article  Google Scholar 

  168. Simbulan-Rosenthal CM, Haddad BR, Rosenthal DS, Weaver Z, Coleman A, Luo R, Young HM, Wang Z-Q, Ried T, Smulson ME (1999) Chromosomal aberrations in PARP −/− mice: genome stabilization in immortalized cells by reintroduction of poly (ADP-ribose) polymerase cDNA. Proc Natl Acad Sci 96(23):13191–13196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Wang Z-Q, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11(18):2347–2358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Amé J-C, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Höger T, Ménissier-de Murcia J, de Murcia G (1999) PARP-2, a novel mammalian DNA damage-dependent poly (ADP-ribose) polymerase. J Biol Chem 274(25):17860–17868

    Article  PubMed  Google Scholar 

  171. de Murcia JM, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Amé JC, Dierich A, LeMeur M (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22(9):2255–2263

    Article  PubMed  PubMed Central  Google Scholar 

  172. Yang F, Baumann C, De La Fuente R (2009) Persistence of histone H2AX phosphorylation after meiotic chromosome synapsis and abnormal centromere cohesion in poly (ADP-ribose) polymerase (Parp-1) null oocytes. Dev Biol 331(2):326–338. https://doi.org/10.1016/j.ydbio.2009.05.550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Dantzer F, Mark M, Quenet D, Scherthan H, Huber A, Liebe B, Monaco L, Chicheportiche A, Sassone-Corsi P, De Murcia G (2006) Poly (ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci 103(40):14854–14859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412. http://www.nature.com/nrm/journal/v9/n5/suppinfo/nrm2395_S1.html

  175. Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z, Elvin JA, Bronson RT, Crum CP, McKeon F (2006) p63 protects the female germ line during meiotic arrest. Nature 444(7119):624–628. https://doi.org/10.1038/nature05337

    Article  PubMed  CAS  Google Scholar 

  176. Livera G, Petre-Lazar B, Guerquin M-J, Trautmann E, Coffigny H, Habert R (2008) p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction 135(1):3–12. https://doi.org/10.1530/rep-07-0054

    Article  PubMed  CAS  Google Scholar 

  177. Tuppi M, Kehrloesser S, Coutandin DW, Rossi V, Luh LM, Strubel A, Hötte K, Hoffmeister M, Schäfer B, De Oliveira T, Greten F (2018) Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nat Struct Mol Biol 25(3):261–269

    Article  PubMed  CAS  Google Scholar 

  178. Gebel J, Tuppi M, Krauskopf K, Coutandin D, Pitzius S, Kehrloesser S, Osterburg C, Dötsch V (2017) Control mechanisms in germ cells mediated by p53 family proteins. J Cell Sci 130(16):2663–2671

    Article  CAS  Google Scholar 

  179. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7(5):335–346

    Article  PubMed  CAS  Google Scholar 

  180. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447(7147):941–950. https://doi.org/10.1038/nature05978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Friedberg EC, Wagner R, Radman M (2002) Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296(5573):1627–1630. https://doi.org/10.1126/science.1070236

    Article  PubMed  CAS  Google Scholar 

  182. Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353

    Article  PubMed  CAS  Google Scholar 

  183. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Labhart P (1999) Ku-dependent nonhomologous DNA end joining in Xenopus egg extracts. Mol Cell Biol 19(4):2585–2593. https://doi.org/10.1128/mcb.19.4.2585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  PubMed  CAS  Google Scholar 

  186. Ceccaldi R, Sarangi P, D’Andrea AD (2016) The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17(6):337–349. https://doi.org/10.1038/nrm.2016.48

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by funding from the National Health and Medical Research Council (NHMRC) of Australia Project Grant to KH (1100219); AW was supported by a NHMRC Early Career Fellowship (1120300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Hutt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stringer, J.M., Winship, A., Liew, S.H. et al. The capacity of oocytes for DNA repair. Cell. Mol. Life Sci. 75, 2777–2792 (2018). https://doi.org/10.1007/s00018-018-2833-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2833-9

Keywords

Navigation